Find the GCF (greatest common factor) of the following terms. \[ \left\{3 x y, 5 x^{3} y, 7 x^{2}\right\} \]
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To find the GCF of the terms \(3xy\), \(5x^3y\), and \(7x^2\), we start by identifying the coefficients and the variable parts. The coefficients are 3, 5, and 7. The GCF of these numbers is 1, since they do not share any common factor greater than 1. Next, we look at the variables: - For \(x\), the smallest exponent is 1 (from \(3xy\)). - For \(y\), the smallest exponent is also 1 (from both \(3xy\) and \(5x^3y\)). Putting it all together, the GCF of the three terms is: \[ 1 \cdot x^1 \cdot y^1 = xy. \] Therefore, the GCF of \(3xy\), \(5x^3y\), and \(7x^2\) is \(xy\).
