Pregunta
upstudy study bank question image url

A county official would like to estimate the proportion of homes in their county that were heated by natural gas. They randomly select 1200 homes in their county and find that \( 45 \% \) were heated by natural gas. Construct a \( 95 \% \) confidence interval for the population proportion of of homes in their county that were heated by natural gas. Do not round between steps. Round answers to at least 4 decimal places. Select an answer \( \hat{v}<\square \)

Ask by Norton Griffiths. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The 95% confidence interval for the proportion of homes heated by natural gas is (0.4218, 0.4782).

Solución

Step 1. Identify the sample proportion. • ẑ = 0.45 (since 45% of 1200 homes were heated by natural gas). Step 2. Calculate the standard error (SE) for the proportion. • SE = √[ẑ(1 - ẑ) / n] = √[0.45 × 0.55 / 1200] • = √(0.2475 / 1200) • = √(0.00020625) • ≈ 0.0144 Step 3. Determine the critical z-value for a 95% confidence interval. • For 95% confidence, the critical z-value is approximately 1.96. Step 4. Compute the margin of error (ME). • ME = z* × SE = 1.96 × 0.0144 ≈ 0.0282 Step 5. Construct the 95% confidence interval. • Lower limit = 0.45 − 0.0282 = 0.4218 • Upper limit = 0.45 + 0.0282 = 0.4782 Rounded to four decimal places, the 95% confidence interval for the population proportion is approximately:   (0.4218, 0.4782). Thus, the answer is: 0.4218 < p < 0.4782.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To construct a \( 95\% \) confidence interval for the population proportion of homes heated by natural gas, we first need to calculate the sample proportion (\( \hat{p} \)) and the standard error (SE). 1. Sample proportion \( \hat{p} = 0.45 \) (i.e., \( 45\% \) of \( 1200 \)). 2. Standard error (SE) is calculated using the formula: \[ SE = \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} \] where \( n = 1200 \): \[ SE = \sqrt{\frac{0.45 \times 0.55}{1200}} \approx \sqrt{\frac{0.2475}{1200}} \approx \sqrt{0.00020625} \approx 0.0144 \] 3. For a \( 95\% \) confidence interval, we use a \( z \)-value of approximately \( 1.96 \). 4. Margin of error (ME) is calculated as: \[ ME = z \times SE = 1.96 \times 0.0144 \approx 0.028224 \] 5. The confidence interval is: \[ \hat{p} \pm ME = 0.45 \pm 0.028224 \] Finally, calculating the interval: - Lower limit: \( 0.45 - 0.028224 \approx 0.4218 \) - Upper limit: \( 0.45 + 0.028224 \approx 0.4782 \) Thus, the \( 95\% \) confidence interval for the proportion of homes heated by natural gas is approximately \( (0.4218, 0.4782) \). Select an answer \( \hat{v}<0.4782 \)

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad