Find the derivative of the given function. \[ y=27^{5 x} \]
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To find the derivative of the function \( y=27^{5x} \), we can start by expressing 27 as a power of 3, since \( 27 = 3^3 \). Therefore, we can rewrite the function as \( y = (3^3)^{5x} = 3^{15x} \). Now we can apply the chain rule. The derivative of \( 3^{15x} \) with respect to \( x \) is given by: \[ \frac{dy}{dx} = 3^{15x} \cdot \ln(3) \cdot \frac{d}{dx}(15x) = 3^{15x} \cdot \ln(3) \cdot 15 \] Putting it all together, we have: \[ \frac{dy}{dx} = 15 \ln(3) \cdot 3^{15x} \] Therefore, the derivative of the function \( y = 27^{5x} \) is \[ \frac{dy}{dx} = 15 \ln(3) \cdot 27^{5x} \]
