Find \( f+g, f-g, f g \), and \( \frac{f}{g} \). Determine the domain for each function. \( f(x)=x+1, g(x)=5 x^{2} \) \( (f+g)(x)=5 x^{2}+x+1 \) (Simplify your answer.) What is the domain of \( f+g \) ? A. The domain of \( f+g \) is \( (-\infty, \infty) \). (Type your answer in interval notation.) C. The domain of \( f+g \) is \( \{\quad \). (Use a comma to separate answers as needed.) \( (f-g)(x)=\square \) (Simplify your answer.) C \( f+g \) is \( \varnothing \).
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To find \( f-g \), we calculate: \[ (f-g)(x) = f(x) - g(x) = (x + 1) - (5x^2) = -5x^2 + x + 1 \] So, \[ (f-g)(x) = -5x^2 + x + 1. \] Now, moving on to \( f g \): \[ (f g)(x) = f(x) \cdot g(x) = (x + 1) \cdot (5x^2) = 5x^3 + 5x^2. \] Finally, for \( \frac{f}{g} \): \[ \frac{f}{g}(x) = \frac{f(x)}{g(x)} = \frac{x + 1}{5x^2}. \] Now, let's determine the domains: 1. The domain of \( f+g \) is \( (-\infty, \infty) \), as there are no restrictions on \( x \). 2. For \( f-g \), the domain is also \( (-\infty, \infty) \). 3. For \( f g \), the domain remains \( (-\infty, \infty) \). 4. The function \( \frac{f}{g} \) is undefined when \( g(x) = 0 \). Thus, \( 5x^2 = 0 \) implies \( x = 0 \). Therefore, the domain is \( (-\infty, 0) \cup (0, \infty) \). In summary, the domains are: - \( f+g \): \( (-\infty, \infty) \) - \( f-g \): \( (-\infty, \infty) \) - \( fg \): \( (-\infty, \infty) \) - \( \frac{f}{g} \): \( (-\infty, 0) \cup (0, \infty) \)
