Pregunta
upstudy study bank question image url

Find the final amount of money in an account if \( \$ 1,200 \) is deposited at \( 2.5 \% \) interest compounded semi-annually and the money is left for 9 years. The final amount is \( \$ \square \) Round to the nearest cent. Question Help: QMessage instructor Submit Questiator Subion

Ask by Brooks Alexander. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The final amount in the account is approximately \$1,500.36.

Solución

We can use the compound interest formula:   A = P(1 + r/n)^(n*t) where:   P = principal = $1,200,   r = annual interest rate = 0.025,   n = number of compounds per year = 2 (semi-annually),   t = number of years = 9. Step-by-step calculation: 1. Calculate the interest rate per compounding period:   r/n = 0.025 / 2 = 0.0125 2. Calculate the total number of compounding periods:   n * t = 2 * 9 = 18 3. Substitute into the formula:   A = 1200 * (1 + 0.0125)^18     = 1200 * (1.0125)^18 4. Calculate (1.0125)^18. Using a calculator, we find:   (1.0125)^18 ≈ 1.2503 5. Multiply by the principal:   A ≈ 1200 * 1.2503 = 1500.36 Rounding to the nearest cent, the final amount in the account is approximately $1,500.36.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the final amount in an account with compound interest, you can use the formula: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money, which is \( \$1,200 \)). - \( r \) is the annual interest rate (decimal) (so \( 2.5\% = 0.025 \)). - \( n \) is the number of times that interest is compounded per year (for semi-annual, \( n = 2 \)). - \( t \) is the time the money is invested or borrowed for, in years (which is \( 9 \) years). Plugging in the values: \[ A = 1200 \left(1 + \frac{0.025}{2}\right)^{2 \times 9} \] Calculating it step by step gives: \[ A = 1200 \left(1 + 0.0125\right)^{18} \] \[ A = 1200 \left(1.0125\right)^{18} \] Calculating \( (1.0125)^{18} \) gives approximately \( 1.2463 \). Now, multiplying by the principal: \[ A \approx 1200 \times 1.2463 \approx 1495.56 \] So, the final amount, rounded to the nearest cent, is approximately \( \boxed{1495.56} \). --- Getting an insight into how compounding works can make you a smarter investor! For instance, when you leave your money in a savings account with compound interest, you're not just earning interest on your initial investment; you’re also earning interest on the interest that has already been added to your account! This magical effect is what makes investing early and often so powerful in building wealth. Ever heard of "the rule of 72"? It's a quick way to estimate how long an investment will take to double. Just divide 72 by your interest rate! So, with a 2.5% interest rate, you can expect your money to double in about 28.8 years! This handy little rule can help you make better financial decisions when opting for savings and investments.

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad