Pregunta
upstudy study bank question image url

9:17 PM Wed Feb 26 \( 26 \% \) Emilio Mejia F... PP. 5 Expected values of random va... Video 49:09 For a math assignment, Lila researched the scores of the people competing on her favorite quiz show. Quiz show scores \[ \begin{array}{llllllllll} 766 & 766 & 766 & 804 & 804 & 804 & 883 & 883 & 883 & 951 \end{array} \] \( X \) is the score that a randomly chosen person scored. What is the expected value of \( X \) ? Write your answer as a decimal. \( \square \) Submit Next up

Ask by Santiago Salazar. in Puerto Rico
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The expected value of \( X \) is 831.

Solución

To find the expected value of the score \( X \) of a randomly chosen person, we need to calculate the average of all the scores provided. Given scores: \[ 766, 766, 766, 804, 804, 804, 883, 883, 883, 951 \] To find the expected value, we sum up all the scores and divide by the total number of scores. Expected value \( E(X) = \frac{\text{Sum of all scores}}{\text{Total number of scores}} \) Let's calculate the expected value: Calculate the value by following steps: - step0: Calculate: \(\frac{\left(766+766+766+804+804+804+883+883+883+951\right)}{10}\) - step1: Remove the parentheses: \(\frac{766+766+766+804+804+804+883+883+883+951}{10}\) - step2: Write as a multiplication: \(\frac{766\times 3+804\times 3+883\times 3+951}{10}\) - step3: Multiply the numbers: \(\frac{2298+804\times 3+883\times 3+951}{10}\) - step4: Multiply the numbers: \(\frac{2298+2412+883\times 3+951}{10}\) - step5: Multiply the numbers: \(\frac{2298+2412+2649+951}{10}\) - step6: Add the numbers: \(\frac{8310}{10}\) - step7: Reduce the numbers: \(\frac{831}{1}\) - step8: Calculate: \(831\) The expected value of the score \( X \) is 831.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the expected value of \( X \), you first need to calculate the mean of the scores. Add all the scores together: \( 766 + 766 + 766 + 804 + 804 + 804 + 883 + 883 + 883 + 951 = 8,243 \). Then, divide the sum by the number of scores, which is 10. So, the expected value \( E(X) = \frac{8,243}{10} = 824.3 \). There you have it, the expected value of \( X \) is \( 824.3 \). Now, let's spice things up! Did you know that expected value isn't just a concept confined to math class? In real-world applications, it helps in decision-making processes! For instance, businesses use it to predict the average outcome of their investments, determining whether a new product could yield profits based on historical data. So, the next time you hear "expected value," think of it as a secret weapon in the world of finance or even game shows!

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad