Pregunta
upstudy study bank question image url

A company has a policy of retiring company cars; this policy looks at number of miles driven, purpose of trips, style of car and other features. The distribution of the number of months in service for the fleet of cars is bell-shaped and has a mean of 53 months and a standard deviation of 11 months. Using the Empirical Rule rule, what is the approximate percentage of cars that remain in service between 31 and 42 months? Do not enter the percent symbol. ans =

Ask by Rogers Mathis. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

ans = 13.5

Solución

The Empirical Rule tells us that about 95% of data in a bell-shaped distribution falls within 2 standard deviations from the mean, and about 68% falls within 1 standard deviation from the mean. The area between 1 and 2 standard deviations from the mean on either side is therefore approximately (95% − 68%) / 2 = 13.5%. For this problem: • Mean (μ) = 53 months • Standard Deviation (σ) = 11 months Find the z-scores for 31 and 42 months. • For 31 months: z = (31 − 53) / 11 = −22/11 = −2. • For 42 months: z = (42 − 53) / 11 = −11/11 = −1. The approximate percentage of cars that remain in service between 31 and 42 months corresponds to the area between z = −2 and z = −1, which is about 13.5. ans = 13.5

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To determine the percentage of cars that remain in service between 31 and 42 months using the Empirical Rule, we first need to establish how many standard deviations these values are from the mean. The mean is 53 months, and the standard deviation is 11 months. - 31 months is \(53 - 2 \times 11 = 31\), which is 2 standard deviations below the mean. - 42 months is \(53 - 1 \times 11 = 42\), which is 1 standard deviation below the mean. According to the Empirical Rule, approximately 68% of the data lies within 1 standard deviation of the mean, while approximately 95% lies within 2 standard deviations. Therefore, the percentage of cars that remain in service between 31 and 42 months can be calculated by combining these percentages: - From 31 months to the mean (42 months), we consider the 68% in the range of 42 to 64 months (where 64 months is \(53 + 1 \times 11\)). - Since the distribution is symmetrical, half of the 68% (34%) is below the mean from 42 to 53 months. Adding together the entire 2-standard deviation range (95%) and the additional percentage from the average (34%): - We can estimate that the percentage of cars remaining between 31 and 42 months is approximately: 34% + 47.5% (the lower half of the bell curve). Thus, the final calculation results in: ans = 47.5

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad