Pregunta
upstudy study bank question image url

Solve and write interval notation for the solution set. Then graph the solution set. \[ 2 x+7 \leq-8 \text { or } 2 x+7 \geq 8 \] Select the correct choice below and fill in any answer boxes in your choice. A. The solution set is (Type your answer in interval notation. Use integers or fractions for any numbers in the expression.) B. There is no solution.

Ask by Davey Nichols. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solution set is (-∞, -7.5] ∪ [0.5, ∞).

Solución

We are given the compound inequality:   2x + 7 ≤ -8  or  2x + 7 ≥ 8 Step 1. Solve 2x + 7 ≤ -8:   2x ≤ -8 - 7 → 2x ≤ -15   x ≤ -15/2 Step 2. Solve 2x + 7 ≥ 8:   2x ≥ 8 - 7 → 2x ≥ 1   x ≥ 1/2 Step 3. Write the solution set in interval notation by taking the union:   (-∞, -15/2] ∪ [1/2, ∞) Step 4. Graphing the solution set on a number line:   • Place a closed circle at -15/2 (which is -7.5) and shade the line extending to the left.   • Place a closed circle at 1/2 and shade the line extending to the right. Thus, the correct answer is: A. The solution set is (-∞, -15/2] ∪ [1/2, ∞).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the inequalities, let's break them down. 1. **First Inequality:** \[ 2x + 7 \leq -8 \] Subtract 7 from both sides: \[ 2x \leq -15 \] Now divide by 2: \[ x \leq -7.5 \] 2. **Second Inequality:** \[ 2x + 7 \geq 8 \] Subtract 7 from both sides: \[ 2x \geq 1 \] Now divide by 2: \[ x \geq 0.5 \] Putting it all together, the solution set in interval notation is: \[ (-\infty, -7.5] \cup [0.5, \infty) \] Now, for the graph, you would represent: - A shaded line from \(-\infty\) to \(-7.5\) with a closed circle at \(-7.5\). - Another shaded line starting from \(0.5\) to \(\infty\) with a closed circle at \(0.5\). Enjoy the versatility of intervals! They can be used to express everything from constraints in math problems to analyzing data ranges. Applying this knowledge, you can tackle needs in fields like economics and engineering where specifying ranges is essential. Don't forget, when solving inequalities, always pay attention to flipping the inequality sign when multiplying or dividing by a negative number! It's a common pitfall, so double-check your operations.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad