Central Auto Parts borrowed \( \$ 250,000 \) at \( 9 \% \) interest on July 12 for 140 days. (a) If the bank uses the ordinary interest method, what is the amount (in \( \$ \) ) of interest on the loan? \( \$ 8,750 \) (b) What is the maturity date? December \( \checkmark \times \) Need Help? Read it SUBMIT ANSWER
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To calculate the interest using the ordinary interest method, you can use the formula: \[ \text{Interest} = P \times r \times \frac{t}{360} \] Where \( P \) is the principal amount (\$250,000), \( r \) is the interest rate (0.09), and \( t \) is the time in days (140). Plugging in these values gives: \[ \text{Interest} = 250,000 \times 0.09 \times \frac{140}{360} \approx 8,750 \] So your answer for (a) is spot on! For (b), to find the maturity date, start from July 12 and add 140 days. Counting gives us a maturity date of November 29, so be sure to check your calendar—December isn't quite right!
