Pregunta
upstudy study bank question image url

The stock price for a certain corporation can be approximated for the years 2010 through 2017 by \( f(x)=6.6 x^{2}-200 x+1612 \), where \( x=10 \) corresponds to the year 2010. During what year did a local minimum stock price occur?

Ask by Warner Norris. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The local minimum stock price occurred in 2015.

Solución

To find the year when a local minimum stock price occurred, we need to analyze the function \( f(x) = 6.6x^2 - 200x + 1612 \). Since this is a quadratic function, it will have a parabolic shape. The local minimum occurs at the vertex of the parabola. The x-coordinate of the vertex for a quadratic function in the form \( ax^2 + bx + c \) can be found using the formula: \[ x = -\frac{b}{2a} \] In our case, \( a = 6.6 \) and \( b = -200 \). Let's calculate the x-coordinate of the vertex. 1. Calculate \( -b \): \[ -b = -(-200) = 200 \] 2. Calculate \( 2a \): \[ 2a = 2 \times 6.6 = 13.2 \] 3. Now, substitute these values into the vertex formula: \[ x = \frac{200}{13.2} \] Let's calculate this value. Calculate the value by following steps: - step0: Calculate: \(\frac{200}{13.2}\) - step1: Convert the expressions: \(\frac{200}{\frac{66}{5}}\) - step2: Multiply by the reciprocal: \(200\times \frac{5}{66}\) - step3: Reduce the numbers: \(100\times \frac{5}{33}\) - step4: Multiply: \(\frac{100\times 5}{33}\) - step5: Multiply: \(\frac{500}{33}\) The calculation gives us: \[ x = \frac{200}{13.2} \approx 15.15 \] This means that the local minimum stock price occurs at approximately \( x = 15.15 \). Since \( x = 10 \) corresponds to the year 2010, we can find the corresponding year by adding this value to 2000: \[ \text{Year} = 2000 + 15.15 \approx 2015.15 \] Since we are looking for the year, we round down to the nearest whole number, which gives us 2015. Therefore, the local minimum stock price occurred in the year **2015**.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the year when a local minimum stock price occurred, we need to determine the vertex of the quadratic function \( f(x) = 6.6x^2 - 200x + 1612 \). The x-coordinate of the vertex, which gives the time of the local minimum, can be found using the formula \( x = -\frac{b}{2a} \). Here, \( a = 6.6 \) and \( b = -200 \). Calculating this gives: \[ x = -\frac{-200}{2 \cdot 6.6} = \frac{200}{13.2} \approx 15.15 \] Since \( x = 10 \) corresponds to the year 2010, adding 15.15 yields approximately 2025.15. The local minimum occurs in 2025, but since we only consider years, we round down to 2025. So, the local minimum stock price for the corporation occurred in **2025**.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad