Prove \( \lim _{x \rightarrow 5} f\left(g(x)=f\left(\lim _{x \rightarrow 5} g(x)\right)\right. \) if \( f(x)=x^{2}-3 x+2 \) and \( g(x)=2 x-3 \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To prove \( \lim _{x \rightarrow 5} f(g(x)) = f\left(\lim _{x \rightarrow 5} g(x)\right) \), we first need to evaluate each component step by step. 1. **Finding \( \lim_{x \rightarrow 5} g(x) \)**: \[ g(x) = 2x - 3 \] Now, substituting \( x = 5 \): \[ g(5) = 2(5) - 3 = 10 - 3 = 7 \] Thus, \( \lim_{x \rightarrow 5} g(x) = 7 \). 2. **Finding \( f(g(x)) \)**: We know \( f(x) = x^2 - 3x + 2 \), so we want to find \( f(g(x)) \): \[ f(g(x)) = f(2x - 3) = (2x - 3)^2 - 3(2x - 3) + 2 \] Now, let’s simplify \( f(g(x)) \): - Expanding \( (2x - 3)^2 \): \[ (2x - 3)^2 = 4x^2 - 12x + 9 \] - Calculating \( -3(2x - 3) \): \[ -3(2x - 3) = -6x + 9 \] - Now combining these: \[ f(g(x)) = 4x^2 - 12x + 9 - 6x + 9 + 2 = 4x^2 - 18x + 20 \] 3. **Finding \( \lim_{x \rightarrow 5} f(g(x)) \)**: Now we evaluate: \[ \lim_{x \rightarrow 5} f(g(x)) = \lim_{x \rightarrow 5} (4x^2 - 18x + 20) \] Substituting \( x = 5 \): \[ = 4(5^2) - 18(5) + 20 = 4(25) - 90 + 20 = 100 - 90 + 20 = 30 \] 4. **Finding \( f(\lim_{x \rightarrow 5} g(x)) \)**: We now find \( f(7) \) since \( \lim_{x \rightarrow 5} g(x) = 7 \): \[ f(7) = 7^2 - 3(7) + 2 = 49 - 21 + 2 = 49 - 21 + 2 = 30 \] Finally, since both limits are equal: \[ \lim_{x \rightarrow 5} f(g(x)) = f\left(\lim_{x \rightarrow 5} g(x)\right) = 30 \] Thus the statement \( \lim_{x \rightarrow 5} f(g(x)) = f\left(\lim_{x \rightarrow 5} g(x)\right) \) is proven. The result is: \[ \boxed{30} \]
