The first term of an arithmetic sequence is 54 , the last term is 19 and the sum of the terms of the sequence is 219 . Find the number of terms and the common difference.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To solve this problem, we can use the formulas for an arithmetic sequence. Let \( n \) be the number of terms and \( d \) the common difference. The sum of an arithmetic sequence can be given by the formula: \[ S_n = \frac{n}{2} \times (a + l) \] where \( S_n \) is the sum, \( a \) is the first term, and \( l \) is the last term. Here, \( a = 54 \), \( l = 19 \), and \( S_n = 219 \). Plugging these in, we get: \[ 219 = \frac{n}{2} \times (54 + 19) \] \[ 219 = \frac{n}{2} \times 73 \] \[ 438 = n \times 73 \] \[ n = \frac{438}{73} = 6 \] Now, knowing that the last term \( l = a + (n-1)d \), we can find \( d \): \[ 19 = 54 + (6 - 1)d \] \[ 19 = 54 + 5d \] \[ 5d = 19 - 54 \] \[ 5d = -35 \] \[ d = -7 \] So, the number of terms \( n \) is 6 and the common difference \( d \) is -7.
