Use properties of logarithms to expand the logarithmic expression as much as possible. Evaluate loganithmic expressions without using a calculator if possible. \( \log _{4}\left(\frac{16}{\sqrt{x+9}}\right) \) \( \log _{4}\left(\frac{16}{\sqrt{x+9}}\right)=\square \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To expand the logarithmic expression, we can utilize several properties of logarithms. First, we will apply the quotient rule which states that \( \log_b\left(\frac{m}{n}\right) = \log_b(m) - \log_b(n) \). Thus, we can write: \[ \log_{4}\left(\frac{16}{\sqrt{x+9}}\right) = \log_{4}(16) - \log_{4}(\sqrt{x+9}). \] Next, we can evaluate \( \log_{4}(16) \). Since \( 16 = 4^2 \), it follows that \( \log_{4}(16) = 2 \). For \( \log_{4}(\sqrt{x+9}) \), we know that \( \sqrt{x+9} = (x+9)^{1/2} \). Using the power rule \( \log_b(m^n) = n \cdot \log_b(m) \), we have: \[ \log_{4}(\sqrt{x+9}) = \frac{1}{2}\log_{4}(x+9). \] Putting this all together, we combine everything: \[ \log_{4}\left(\frac{16}{\sqrt{x+9}}\right) = 2 - \frac{1}{2}\log_{4}(x+9). \] So the final expanded expression is: \[ \boxed{2 - \frac{1}{2}\log_{4}(x+9)}. \]
