Pregunta
upstudy study bank question image url

It correct to say that \( \sin 2 x=2 \sin x \) ? otivate your answer by choosing any three values of \( x \) and coupleting the table below those values. Round your answers off to three decimal places where needed. \begin{tabular}{|c|c|c}\hline\( x \) & \( \sin 2 x \) & \( 2 \sin x \) \\ \hline\end{tabular}

Ask by Griffin Zimmerman. in South Africa
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The statement \( \sin 2x = 2 \sin x \) is not always correct. For example, when \( x = 0 \), both sides equal 0; when \( x = \frac{\pi}{4} \), \( \sin 2x = 1 \) and \( 2 \sin x = \sqrt{2} \); and when \( x = \frac{\pi}{2} \), both sides equal 0. Thus, the equation does not hold true for all values of \( x \).

Solución

To determine if the statement \( \sin 2x = 2 \sin x \) is correct, we can choose three values of \( x \) and calculate the values of \( \sin 2x \) and \( 2 \sin x \) for each value of \( x \). Let's choose \( x = 0 \), \( x = \frac{\pi}{4} \), and \( x = \frac{\pi}{2} \) to calculate the values of \( \sin 2x \) and \( 2 \sin x \) for each value of \( x \). 1. For \( x = 0 \): - \( \sin 2x = \sin 0 = 0 \) - \( 2 \sin x = 2 \sin 0 = 0 \) 2. For \( x = \frac{\pi}{4} \): - \( \sin 2x = \sin \frac{\pi}{2} = 1 \) - \( 2 \sin x = 2 \sin \frac{\pi}{4} = 2 \times \frac{\sqrt{2}}{2} = \sqrt{2} \) 3. For \( x = \frac{\pi}{2} \): - \( \sin 2x = \sin \pi = 0 \) - \( 2 \sin x = 2 \sin \frac{\pi}{2} = 2 \times 1 = 2 \) From the calculations above, we can see that the statement \( \sin 2x = 2 \sin x \) is not always correct. The values of \( \sin 2x \) and \( 2 \sin x \) do not match for all chosen values of \( x \). Therefore, the statement \( \sin 2x = 2 \sin x \) is not correct.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine if it is correct to say that \( \sin 2x = 2 \sin x \), we'll evaluate both expressions for some chosen values of \( x \). However, we know from trigonometric identities that \( \sin 2x = 2 \sin x \cos x \), so it will likely show differing results. Let's choose \( x = 0 \), \( x = \frac{\pi}{6} \), and \( x = \frac{\pi}{4} \) for our calculations: 1. For \( x = 0 \): - \( \sin 2(0) = \sin 0 = 0 \) - \( 2 \sin(0) = 2 \cdot 0 = 0 \) 2. For \( x = \frac{\pi}{6} \) (approximately 0.524): - \( \sin 2\left(\frac{\pi}{6}\right) = \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \approx 0.866 \) - \( 2 \sin\left(\frac{\pi}{6}\right) = 2 \cdot \frac{1}{2} = 1 \) 3. For \( x = \frac{\pi}{4} \) (approximately 0.785): - \( \sin 2\left(\frac{\pi}{4}\right) = \sin\left(\frac{\pi}{2}\right) = 1 \) - \( 2 \sin\left(\frac{\pi}{4}\right) = 2 \cdot \frac{\sqrt{2}}{2} = \sqrt{2} \approx 1.414 \) Now we can fill in our table: \begin{tabular}{|c|c|c}\hline \( x \) & \( \sin 2x \) & \( 2 \sin x \) \\ \hline 0 & 0 & 0 \\ \(\frac{\pi}{6}\) & 0.866 & 1 \\ \(\frac{\pi}{4}\) & 1 & 1.414 \\ \hline \end{tabular} From the calculations, we can see that for most values of \( x \) other than zero, \( \sin 2x \) does not equal \( 2 \sin x \). Therefore, it is incorrect to say that \( \sin 2x = 2 \sin x \) in general terms.

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad