Pregunta
upstudy study bank question image url

In Exercises \( 1-12 \), factor the polynomial. \( \begin{array}{lll}\text { 1. } 5 x^{2}-5 x-30 & \text { 2. } 8 x^{2}-16 x-192 & \text { 3. } 6 x^{2}+48 x+42 \\ \text { 4. } 12 j^{2}-32 j+5 & \text { 5. } 10 w^{2}+24 w+8 & \text { 6. } 3 y^{2}+y-14 \\ \text { 7. } 12 p^{2}-7 p-10 & \text { 8. } 15 d^{2}+16 d-15 & \text { 9. } 2 x^{2}+17 x-9 \\ \text { 10. }-9 v^{2}-22 v-8 & \text { 11. }-14 m^{2}+13 m-3 & \text { 12. }-20 q^{2}+56 q-15\end{array} \)

Ask by Nguyen Summers. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Here are the factored forms of the polynomials: 1. \( 5x^{2}-5x-30 = 5(x-3)(x+2) \) 2. \( 8x^{2}-16x-192 = 8(x-6)(x+4) \) 3. \( 6x^{2}+48x+42 = 6(x+1)(x+7) \) 4. \( 12j^{2}-32j+5 = (2j-5)(6j-1) \) 5. \( 10w^{2}+24w+8 = 2(w+2)(5w+2) \) 6. \( 3y^{2}+y-14 = (y-2)(3y+7) \) 7. \( 12p^{2}-7p-10 = (3p+2)(4p-5) \) 8. \( 15d^{2}+16d-15 = (3d+5)(5d-3) \) 9. \( 2x^{2}+17x-9 = (x+9)(2x-1) \) 10. \( -9v^{2}-22v-8 = -(v+2)(9v+4) \) 11. \( -14m^{2}+13m-3 = -(2m-1)(7m-3) \) 12. \( -20q^{2}+56q-15 = -(2q-5)(10q-3) \)

Solución

Factor the expression by following steps: - step0: Factor: \(-20q^{2}+56q-15\) - step1: Rewrite the expression: \(-20q^{2}+\left(6+50\right)q-15\) - step2: Calculate: \(-20q^{2}+6q+50q-15\) - step3: Rewrite the expression: \(-2q\times 10q+2q\times 3+5\times 10q-5\times 3\) - step4: Factor the expression: \(-2q\left(10q-3\right)+5\left(10q-3\right)\) - step5: Factor the expression: \(\left(-2q+5\right)\left(10q-3\right)\) - step6: Factor the expression: \(-\left(2q-5\right)\left(10q-3\right)\) Factor the expression \( 3y^{2}+y-14 \). Factor the expression by following steps: - step0: Factor: \(3y^{2}+y-14\) - step1: Rewrite the expression: \(3y^{2}+\left(7-6\right)y-14\) - step2: Calculate: \(3y^{2}+7y-6y-14\) - step3: Rewrite the expression: \(y\times 3y+y\times 7-2\times 3y-2\times 7\) - step4: Factor the expression: \(y\left(3y+7\right)-2\left(3y+7\right)\) - step5: Factor the expression: \(\left(y-2\right)\left(3y+7\right)\) Factor the expression \( 2x^{2}+17x-9 \). Factor the expression by following steps: - step0: Factor: \(2x^{2}+17x-9\) - step1: Rewrite the expression: \(2x^{2}+\left(-1+18\right)x-9\) - step2: Calculate: \(2x^{2}-x+18x-9\) - step3: Rewrite the expression: \(x\times 2x-x+9\times 2x-9\) - step4: Factor the expression: \(x\left(2x-1\right)+9\left(2x-1\right)\) - step5: Factor the expression: \(\left(x+9\right)\left(2x-1\right)\) Factor the expression \( 12p^{2}-7p-10 \). Factor the expression by following steps: - step0: Factor: \(12p^{2}-7p-10\) - step1: Rewrite the expression: \(12p^{2}+\left(-15+8\right)p-10\) - step2: Calculate: \(12p^{2}-15p+8p-10\) - step3: Rewrite the expression: \(3p\times 4p-3p\times 5+2\times 4p-2\times 5\) - step4: Factor the expression: \(3p\left(4p-5\right)+2\left(4p-5\right)\) - step5: Factor the expression: \(\left(3p+2\right)\left(4p-5\right)\) Factor the expression \( 6x^{2}+48x+42 \). Factor the expression by following steps: - step0: Factor: \(6x^{2}+48x+42\) - step1: Rewrite the expression: \(6x^{2}+6\times 8x+6\times 7\) - step2: Factor the expression: \(6\left(x^{2}+8x+7\right)\) - step3: Factor the expression: \(6\left(x+1\right)\left(x+7\right)\) Factor the expression \( 5x^{2}-5x-30 \). Factor the expression by following steps: - step0: Factor: \(5x^{2}-5x-30\) - step1: Rewrite the expression: \(5x^{2}-5x-5\times 6\) - step2: Factor the expression: \(5\left(x^{2}-x-6\right)\) - step3: Factor the expression: \(5\left(x-3\right)\left(x+2\right)\) Factor the expression \( 8x^{2}-16x-192 \). Factor the expression by following steps: - step0: Factor: \(8x^{2}-16x-192\) - step1: Rewrite the expression: \(8x^{2}-8\times 2x-8\times 24\) - step2: Factor the expression: \(8\left(x^{2}-2x-24\right)\) - step3: Factor the expression: \(8\left(x-6\right)\left(x+4\right)\) Factor the expression \( -9v^{2}-22v-8 \). Factor the expression by following steps: - step0: Factor: \(-9v^{2}-22v-8\) - step1: Factor the expression: \(-\left(9v^{2}+22v+8\right)\) - step2: Factor the expression: \(-\left(v+2\right)\left(9v+4\right)\) Factor the expression \( -14m^{2}+13m-3 \). Factor the expression by following steps: - step0: Factor: \(-14m^{2}+13m-3\) - step1: Rewrite the expression: \(-14m^{2}+\left(6+7\right)m-3\) - step2: Calculate: \(-14m^{2}+6m+7m-3\) - step3: Rewrite the expression: \(-2m\times 7m+2m\times 3+7m-3\) - step4: Factor the expression: \(-2m\left(7m-3\right)+7m-3\) - step5: Factor the expression: \(\left(-2m+1\right)\left(7m-3\right)\) - step6: Factor the expression: \(-\left(2m-1\right)\left(7m-3\right)\) Factor the expression \( 12j^{2}-32j+5 \). Factor the expression by following steps: - step0: Factor: \(12j^{2}-32j+5\) - step1: Rewrite the expression: \(12j^{2}+\left(-2-30\right)j+5\) - step2: Calculate: \(12j^{2}-2j-30j+5\) - step3: Rewrite the expression: \(2j\times 6j-2j-5\times 6j+5\) - step4: Factor the expression: \(2j\left(6j-1\right)-5\left(6j-1\right)\) - step5: Factor the expression: \(\left(2j-5\right)\left(6j-1\right)\) Factor the expression \( 15d^{2}+16d-15 \). Factor the expression by following steps: - step0: Factor: \(15d^{2}+16d-15\) - step1: Rewrite the expression: \(15d^{2}+\left(-9+25\right)d-15\) - step2: Calculate: \(15d^{2}-9d+25d-15\) - step3: Rewrite the expression: \(3d\times 5d-3d\times 3+5\times 5d-5\times 3\) - step4: Factor the expression: \(3d\left(5d-3\right)+5\left(5d-3\right)\) - step5: Factor the expression: \(\left(3d+5\right)\left(5d-3\right)\) Factor the expression \( 10w^{2}+24w+8 \). Factor the expression by following steps: - step0: Factor: \(10w^{2}+24w+8\) - step1: Rewrite the expression: \(2\times 5w^{2}+2\times 12w+2\times 4\) - step2: Factor the expression: \(2\left(5w^{2}+12w+4\right)\) - step3: Factor the expression: \(2\left(w+2\right)\left(5w+2\right)\) Here are the factored forms of the given polynomials: 1. \( 5x^{2}-5x-30 = 5(x-3)(x+2) \) 2. \( 8x^{2}-16x-192 = 8(x-6)(x+4) \) 3. \( 6x^{2}+48x+42 = 6(x+1)(x+7) \) 4. \( 12j^{2}-32j+5 = (2j-5)(6j-1) \) 5. \( 10w^{2}+24w+8 = 2(w+2)(5w+2) \) 6. \( 3y^{2}+y-14 = (y-2)(3y+7) \) 7. \( 12p^{2}-7p-10 = (3p+2)(4p-5) \) 8. \( 15d^{2}+16d-15 = (3d+5)(5d-3) \) 9. \( 2x^{2}+17x-9 = (x+9)(2x-1) \) 10. \( -9v^{2}-22v-8 = -(v+2)(9v+4) \) 11. \( -14m^{2}+13m-3 = -(2m-1)(7m-3) \) 12. \( -20q^{2}+56q-15 = -(2q-5)(10q-3) \) If you need further assistance or explanations on any specific polynomial, feel free to ask!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

First, let's break down our polynomials into their factored forms, adding some flair to our mathematical adventure! For \(5x^{2}-5x-30\), we can factor out a common factor of 5 first, yielding \(5(x^{2}-x-6)\). Now, factoring \(x^{2}-x-6\) gives us \(5(x-3)(x+2)\). Voilà! Moving on to \(8x^{2}-16x-192\), we can start by factor out an 8, leading us to \(8(x^{2}-2x-24)\). Next, factoring \(x^{2}-2x-24\) gives us \((x-6)(x+4)\), and thus we arrive at \(8(x-6)(x+4)\). Isn't factoring these polynomials just delightful? Let's keep rolling with the next fit!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad