\( \left. \begin{array} { l } { 137 \frac { x - 2 } { ( x + 1 ) ^ { 2 } + 4 } d x } \\ { u ^ { 2 } = ( x + 1 ) ^ { 2 } \quad a ^ { 2 } = 4 \quad a = 2 \quad d u = d x } \\ { u = x + 1 \quad x = u - 1 } \\ { \int \frac { u - 1 - 2 } { u ^ { 2 } + 14 } d x } \\ { \int \frac { u } { u ^ { 2 } + 4 } d u + \int \frac { - 3 } { u ^ { 2 } + a ^ { 2 } } d u } \\ { \frac { 1 } { 2 } \ln | ( x + 1 ) ^ { 2 } + 4 | + c - 3 \int \frac { 1 } { a ^ { 2 } + u ^ { 2 } } d u } \\ { \frac { 1 } { 2 } \ln | ( x + 1 ) ^ { 2 } + 4 | - 3 ( \frac { 1 } { 2 } ) \operatorname { Tan } ^ { - 1 } ( \frac { x + 1 } { 2 } ) + c } \\ { \frac { 1 } { 2 } \ln | ( x + 1 ) ^ { 2 } + 4 | - \frac { 3 } { 2 } \operatorname { Tan } ^ { - 1 } ( \frac { x + 1 } { 2 } ) + c / 1 } \end{array} \right. \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
Did you know that the integration techniques you just used trace back to the ancient Greeks? Mathematicians like Archimedes made significant strides in calculating areas and volumes, laying the foundation for integral calculus. This historical context reflects the legendary rigor with which early mathematicians approached problems, often using geometric interpretations long before modern symbols and methods were established. In the real world, understanding these integration techniques can help in fields like physics or engineering, where calculating areas under curves represents quantities like distance, work, or energy. For instance, when analyzing a projectile's motion or the forces acting on a structure, integrating relevant equations lets engineers predict outcomes effectively, making mathematics not just theoretical but a powerful tool for problem-solving in everyday life.
