The reots of the equation \( f(x)=0 \) is \( x=\frac{4 \pm \sqrt{6-4 m /-m+5)}}{2 m} \) Determine the valaes of \( m \) for which the roots are non-real
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To determine the values of \( m \) for which the roots of the equation \( f(x)=0 \) are non-real, we need to analyze the expression under the square root (the discriminant). The roots are non-real when the discriminant is less than zero. Given \( x=\frac{4 \pm \sqrt{6-4 m / (-m+5)}}{2 m} \), the discriminant is \( 6-4m / (-m+5) \). For the roots to be non-real, we must solve: \[ 6 - \frac{4m}{-m + 5} < 0 \] First, rearranging gives: \[ -\frac{4m}{-m + 5} < -6 \] Multiplying through by \(-(-m + 5)\) (reversing the inequality) we have: \[ 4m > 6(-m + 5) \] Distributing: \[ 4m > -6m + 30 \] Combining like terms yields: \[ 10m > 30 \implies m > 3 \] Thus, the values of \( m \) for which the roots are non-real are \( m > 3 \).
