Pregunta
upstudy study bank question image url

\( \frac{3 y+3}{4} \frac{-y-6}{3}>0 \) Show all your work And draw a number line First find LCO There is no.

Ask by Mcfarlane Stuart. in South Africa
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solution to the inequality is \( y \) between \(-6\) and \(-1\), not including the endpoints.

Solución

To solve the inequality \[ \frac{3y + 3}{4} \cdot \frac{-y - 6}{3} > 0, \] we will follow these steps: 1. **Factor the expressions**. 2. **Identify critical points**. 3. **Test intervals**. 4. **Draw a number line**. ### Step 1: Factor the expressions First, we can factor the numerators: - The first term \(3y + 3\) can be factored as \(3(y + 1)\). - The second term \(-y - 6\) can be factored as \(-1(y + 6)\). Thus, we can rewrite the inequality as: \[ \frac{3(y + 1)}{4} \cdot \frac{-1(y + 6)}{3} > 0. \] ### Step 2: Simplify the expression Now, we can simplify the expression: \[ \frac{3(y + 1) \cdot -1(y + 6)}{4 \cdot 3} > 0. \] This simplifies to: \[ \frac{-(y + 1)(y + 6)}{4} > 0. \] ### Step 3: Identify critical points The critical points occur when the numerator is zero or undefined. The numerator is zero when: \[ -(y + 1)(y + 6) = 0. \] This gives us the critical points: 1. \(y + 1 = 0 \Rightarrow y = -1\) 2. \(y + 6 = 0 \Rightarrow y = -6\) The denominator \(4\) is never zero, so we only consider the critical points from the numerator. ### Step 4: Test intervals The critical points divide the number line into intervals: 1. \( (-\infty, -6) \) 2. \( (-6, -1) \) 3. \( (-1, \infty) \) We will test a point from each interval to determine where the inequality holds. - **Interval 1: \(y = -7\)** \[ \frac{-(-7 + 1)(-7 + 6)}{4} = \frac{-(-6)(-1)}{4} = \frac{-6}{4} < 0 \quad \text{(not valid)} \] - **Interval 2: \(y = -5\)** \[ \frac{-(-5 + 1)(-5 + 6)}{4} = \frac{-(-4)(1)}{4} = \frac{4}{4} > 0 \quad \text{(valid)} \] - **Interval 3: \(y = 0\)** \[ \frac{-(0 + 1)(0 + 6)}{4} = \frac{-(1)(6)}{4} = \frac{-6}{4} < 0 \quad \text{(not valid)} \] ### Step 5: Conclusion The inequality holds for the interval \( (-6, -1) \). ### Number Line Now, we can represent this on a number line: ``` <----|----|----|----|----|----|----|----|----|----> -7 -6 -5 -4 -3 -2 -1 0 1 (----------------) ``` The parentheses indicate that the endpoints \(-6\) and \(-1\) are not included in the solution. ### Final Answer The solution to the inequality is: \[ y \in (-6, -1). \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the inequality \( \frac{3y + 3}{4} \cdot \frac{-y - 6}{3} > 0 \), we will first simplify it step by step. 1. **Simplify the expressions**: \[ \frac{3y + 3}{4} = \frac{3(y + 1)}{4} \] \[ \frac{-y - 6}{3} = \frac{-(y + 6)}{3} \] Thus, the inequality becomes: \[ \frac{3(y + 1)(-(y + 6))}{4 \cdot 3} > 0 \] 2. **Combine fractions**: \[ \frac{-(y + 1)(y + 6)}{4} > 0 \] To eliminate the negative sign from the inequality: \[ (y + 1)(y + 6) < 0 \] 3. **Find critical points**: Set \((y + 1)(y + 6) = 0\). - \(y + 1 = 0 \implies y = -1\) - \(y + 6 = 0 \implies y = -6\) 4. **Test intervals using critical points**: The critical points divide the number line into the intervals: 1. \( (-\infty, -6) \) 2. \( (-6, -1) \) 3. \( (-1, \infty) \) - **Interval \( (-\infty, -6) \)**: Choose \(y = -7\) \(((-7 + 1)((-7 + 6)) = (-6)(-1) > 0\) - **Interval \( (-6, -1) \)**: Choose \(y = -5\) \(((-5 + 1)((-5 + 6)) = (-4)(1) < 0\) - **Interval \( (-1, \infty) \)**: Choose \(y = 0\) \((0 + 1)(0 + 6) = (1)(6) > 0\) 5. **Solution**: The only interval that satisfies the inequality \( (y + 1)(y + 6) < 0 \) is \( (-6, -1) \). 6. **Draw a number line**: ``` <-----|-----|------|-----|-----|-----> -7 -6 -5 -4 -3 -1 (----------------) ``` 7. **Conclusion**: The solution to the inequality is \( y \in (-6, -1) \). For additional context, let's delve into the applicability and common pitfalls in solving similar inequalities: Understanding these inequalities can significantly apply to real-world scenarios like determining profit ranges in business scenarios when the product of two terms represents costs and revenues. Common mistakes in solving such inequalities include overlooking the signs when multiplying or forgetting to test all intervals. Always remember to check the intervals created by the critical points!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad