\( \frac{3 y+3}{4} \frac{-y-6}{3}>0 \) Show all your work And draw a number line First find LCO There is no.
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To solve the inequality \( \frac{3y + 3}{4} \cdot \frac{-y - 6}{3} > 0 \), we will first simplify it step by step. 1. **Simplify the expressions**: \[ \frac{3y + 3}{4} = \frac{3(y + 1)}{4} \] \[ \frac{-y - 6}{3} = \frac{-(y + 6)}{3} \] Thus, the inequality becomes: \[ \frac{3(y + 1)(-(y + 6))}{4 \cdot 3} > 0 \] 2. **Combine fractions**: \[ \frac{-(y + 1)(y + 6)}{4} > 0 \] To eliminate the negative sign from the inequality: \[ (y + 1)(y + 6) < 0 \] 3. **Find critical points**: Set \((y + 1)(y + 6) = 0\). - \(y + 1 = 0 \implies y = -1\) - \(y + 6 = 0 \implies y = -6\) 4. **Test intervals using critical points**: The critical points divide the number line into the intervals: 1. \( (-\infty, -6) \) 2. \( (-6, -1) \) 3. \( (-1, \infty) \) - **Interval \( (-\infty, -6) \)**: Choose \(y = -7\) \(((-7 + 1)((-7 + 6)) = (-6)(-1) > 0\) - **Interval \( (-6, -1) \)**: Choose \(y = -5\) \(((-5 + 1)((-5 + 6)) = (-4)(1) < 0\) - **Interval \( (-1, \infty) \)**: Choose \(y = 0\) \((0 + 1)(0 + 6) = (1)(6) > 0\) 5. **Solution**: The only interval that satisfies the inequality \( (y + 1)(y + 6) < 0 \) is \( (-6, -1) \). 6. **Draw a number line**: ``` <-----|-----|------|-----|-----|-----> -7 -6 -5 -4 -3 -1 (----------------) ``` 7. **Conclusion**: The solution to the inequality is \( y \in (-6, -1) \). For additional context, let's delve into the applicability and common pitfalls in solving similar inequalities: Understanding these inequalities can significantly apply to real-world scenarios like determining profit ranges in business scenarios when the product of two terms represents costs and revenues. Common mistakes in solving such inequalities include overlooking the signs when multiplying or forgetting to test all intervals. Always remember to check the intervals created by the critical points!
