Pregunta
upstudy study bank question image url

Solve the quadratic equation by factoring. \[ 3-22 m=-7 m^{2} \]

Ask by Weber Schofield. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solutions are \( m = \frac{1}{7} \) and \( m = 3 \).

Solución

Solve the equation \( 3-22m=-7m^{2} \). Solve the quadratic equation by following steps: - step0: Solve by factoring: \(3-22m=-7m^{2}\) - step1: Swap the sides: \(-7m^{2}=3-22m\) - step2: Move the expression to the left side: \(-7m^{2}-3+22m=0\) - step3: Factor the expression: \(\left(-m+3\right)\left(7m-1\right)=0\) - step4: Separate into possible cases: \(\begin{align}&-m+3=0\\&7m-1=0\end{align}\) - step5: Solve the equation: \(\begin{align}&m=3\\&m=\frac{1}{7}\end{align}\) - step6: Rewrite: \(m_{1}=\frac{1}{7},m_{2}=3\) The solutions to the quadratic equation \(3-22m=-7m^{2}\) by factoring are: \[ m_{1} = \frac{1}{7} \] \[ m_{2} = 3 \] Therefore, the solutions to the equation are \(m = \frac{1}{7}\) and \(m = 3\).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

First, we rearrange the equation to bring all terms to one side: \[ 7m^2 - 22m + 3 = 0. \] Next, we need to factor this quadratic. We are looking for two numbers that multiply to \( 7 \times 3 = 21 \) and add to \( -22 \). The numbers are -21 and -1. Now we can rewrite the middle term using these numbers: \[ 7m^2 - 21m - 1m + 3 = 0. \] Next, we group the terms: \[ (7m^2 - 21m) + (-1m + 3) = 0. \] Factoring out common factors gives us: \[ 7m(m - 3) - 1(m - 3) = 0. \] Now, we factor out \( (m - 3) \): \[ (m - 3)(7m - 1) = 0. \] Setting each factor to zero gives us: 1. \( m - 3 = 0 \) (thus, \( m = 3 \)) 2. \( 7m - 1 = 0 \) (thus, \( m = \frac{1}{7} \)) So, the solutions are \( m = 3 \) and \( m = \frac{1}{7} \). Now let's add some engaging context! Ever wondered how long ago people were solving quadratic equations just like this? Quadratics have been studied since ancient civilizations, with the Babylonians dabbling in algebra around 2000 BC. They had methods resembling today's techniques, albeit without modern symbols! Now, in a real-world application, quadratic equations pop up everywhere—like modeling the trajectory of a basketball shot! Have you ever shot a hoop? The path of that ball can be represented using a quadratic equation. So, the next time you're shooting some hoops, remember that math is there helping you find the perfect angle!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad