What is the x -value of the hole? \( g(x)=\frac{(x-2)(x+6)}{(x+2)(x-2)} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To find the x-value of the hole in the function \( g(x)=\frac{(x-2)(x+6)}{(x+2)(x-2)} \), we need to look for the common factors in the numerator and denominator. Here, both the numerator and denominator have the factor \( (x-2) \). This gives us a hole at the x-value where \( x-2 = 0 \). Thus, solving for x: \( x - 2 = 0 \) \( x = 2 \) The hole in the graph of \( g(x) \) is located at \( x = 2 \). To further understand, it's fascinating to realize that holes in rational functions often occur at points where both the numerator and the denominator equal zero at the same time. This highlights the delicacy of certain points in mathematics – they remind us that not every number gets to be a star!
