Responder
The limits are:
(a) \( \lim_{x \rightarrow 0} f(x) = 0 \)
(b) \( \lim_{x \rightarrow \frac{\pi}{3}} f(x) = \frac{\pi}{6} \)
Solución
To find the limits of the function \( f(x) = x \cos x \) as \( x \) approaches 0 and as \( x \) approaches \( \frac{\pi}{3} \), we can use the following steps:
(a) To find \( \lim_{x \rightarrow 0} f(x) \):
We can directly substitute \( x = 0 \) into the function \( f(x) = x \cos x \) to find the limit.
(b) To find \( \lim_{x \rightarrow \frac{\pi}{3}} f(x) \):
We can directly substitute \( x = \frac{\pi}{3} \) into the function \( f(x) = x \cos x \) to find the limit.
Let's calculate the limits.
Evaluate the expression by following steps:
- step0: Evaluate:
\(xcosx\)
- step1: Substitute:
\(0\times cos\times 0\)
- step2: Multiply the terms:
\(0\times cos\)
- step3: Multiply:
\(0\times os\)
- step4: Multiply:
\(0\times s\)
- step5: Multiply:
\(0\)
Substitute \( x = 0 \) into the function \( f(x) = x \cos x \) to find the limit as \( x \) approaches 0:
\( \lim_{x \rightarrow 0} f(x) = 0 \)
Now, let's calculate the limit as \( x \) approaches \( \frac{\pi}{3} \).
Evaluate the expression by following steps:
- step0: Evaluate:
\(xcosx\)
- step1: Substitute:
\(\frac{\pi }{3}cos\left(\frac{\pi }{3}\right)\)
- step2: Divide the terms:
\(\frac{\pi }{3}cos\times \frac{\pi }{3}\)
- step3: Multiply the terms:
\(\frac{\pi ^{2}}{9}cos\)
- step4: Multiply the terms:
\(\frac{\pi ^{2}co}{9}s\)
- step5: Multiply the terms:
\(\frac{\pi ^{2}cos}{9}\)
Substitute \( x = \frac{\pi}{3} \) into the function \( f(x) = x \cos x \) to find the limit as \( x \) approaches \( \frac{\pi}{3} \):
\( \lim_{x \rightarrow \frac{\pi}{3}} f(x) = \frac{\pi}{6} \)
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución