9) \( \begin{array}{l}5 x+y=9 \\ 10 x-7 y=-18\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To solve the system of equations, you can use substitution or elimination. Let's use the substitution method. From the first equation, express \(y\) in terms of \(x\): \(y = 9 - 5x\) Now substitute \(y\) in the second equation: \(10x - 7(9 - 5x) = -18\) Expanding this gives: \(10x - 63 + 35x = -18\) Combining like terms results in: \(45x - 63 = -18\) Adding 63 to both sides yields: \(45x = 45\) Dividing by 45 gives: \(x = 1\) Now, substitute \(x\) back into the equation for \(y\): \(y = 9 - 5(1) = 4\) Thus, the solution is \(x = 1\) and \(y = 4\).
