Responder
Here are the solutions for each equation:
a) \( x = 2 \)
d) \( x = 4 \)
g) \( x = -3 \)
j) \( x = 5 \)
m) \( x = 1 \)
p) \( x = 1 \)
s) \( x = 0 \)
v) \( x = -2 \)
Solución
Solve the equation by following steps:
- step0: Solve for \(x\):
\(-2^{x}=-32\)
- step1: Change the signs:
\(2^{x}=32\)
- step2: Rewrite in exponential form:
\(2^{x}=2^{5}\)
- step3: Set the exponents equal:
\(x=5\)
Solve the equation \( 2^{8}=4^{x} \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(2^{8}=4^{x}\)
- step1: Swap the sides:
\(4^{x}=2^{8}\)
- step2: Rewrite in exponential form:
\(2^{2x}=2^{8}\)
- step3: Set the exponents equal:
\(2x=8\)
- step4: Divide both sides:
\(\frac{2x}{2}=\frac{8}{2}\)
- step5: Divide the numbers:
\(x=4\)
Solve the equation \( 27^{x-2}=81^{2 x+1} \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(27^{x-2}=81^{2x+1}\)
- step1: Rewrite the expression:
\(3^{3x-6}=3^{8x+4}\)
- step2: Set the exponents equal:
\(3x-6=8x+4\)
- step3: Move the expression to the left side:
\(3x-8x=4+6\)
- step4: Add and subtract:
\(-5x=4+6\)
- step5: Add and subtract:
\(-5x=10\)
- step6: Change the signs:
\(5x=-10\)
- step7: Divide both sides:
\(\frac{5x}{5}=\frac{-10}{5}\)
- step8: Divide the numbers:
\(x=-2\)
Solve the equation \( \frac{1}{2^{x}}=8 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\frac{1}{2^{x}}=8\)
- step1: Rearrange the terms:
\(2^{-x}=8\)
- step2: Rewrite in exponential form:
\(2^{-x}=2^{3}\)
- step3: Set the exponents equal:
\(-x=3\)
- step4: Change the signs:
\(x=-3\)
Solve the equation \( 5^{x}=25 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(5^{x}=25\)
- step1: Rewrite in exponential form:
\(5^{x}=5^{2}\)
- step2: Set the exponents equal:
\(x=2\)
Solve the equation \( 3^{x-2}=\frac{1}{3^{x}} \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(3^{x-2}=\frac{1}{3^{x}}\)
- step1: Rewrite the expression:
\(3^{x-2}=3^{-x}\)
- step2: Set the exponents equal:
\(x-2=-x\)
- step3: Move the variable to the left side:
\(x-2+x=0\)
- step4: Add the terms:
\(2x-2=0\)
- step5: Move the constant to the right side:
\(2x=0+2\)
- step6: Remove 0:
\(2x=2\)
- step7: Divide both sides:
\(\frac{2x}{2}=\frac{2}{2}\)
- step8: Divide the numbers:
\(x=1\)
Solve the equation \( 10^{x}=1 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(10^{x}=1\)
- step1: Rewrite in exponential form:
\(10^{x}=10^{0}\)
- step2: Set the exponents equal:
\(x=0\)
Solve the equation \( 5^{-2}=\frac{1}{25^{x}} \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(5^{-2}=\frac{1}{25^{x}}\)
- step1: Rearrange the terms:
\(5^{-2}=25^{-x}\)
- step2: Swap the sides:
\(25^{-x}=5^{-2}\)
- step3: Rewrite in exponential form:
\(5^{-2x}=5^{-2}\)
- step4: Set the exponents equal:
\(-2x=-2\)
- step5: Change the signs:
\(2x=2\)
- step6: Divide both sides:
\(\frac{2x}{2}=\frac{2}{2}\)
- step7: Divide the numbers:
\(x=1\)
Here are the solutions for each equation:
a) \( 5^{x} = 25 \)
- Solution: \( x = 2 \)
d) \( 2^{8} = 4^{x} \)
- Solution: \( x = 4 \)
g) \( \frac{1}{2^{x}} = 8 \)
- Solution: \( x = -3 \)
j) \( -2^{x} = -32 \)
- Solution: \( x = 5 \)
m) \( 5^{-2} = \frac{1}{25^{x}} \)
- Solution: \( x = 1 \)
p) \( 3^{x-2} = \frac{1}{3^{x}} \)
- Solution: \( x = 1 \)
s) \( 10^{x} = 1 \)
- Solution: \( x = 0 \)
v) \( 27^{x-2} = 81^{2x+1} \)
- Solution: \( x = -2 \)
If you have any further questions or need additional assistance, feel free to ask!
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución