Pregunta
upstudy study bank question image url

Solve for \( x \) a) \( 5^{x}=25 \) d) \( 2^{8}=4^{x} \) g) \( \frac{1}{2^{x}}=8 \) j) \( -2^{x}=-32 \) m) \( 5^{-2}=\frac{1}{25^{x}} \) p) \( 3^{x-2}=\frac{1}{3^{x}} \) s) \( 10^{x}=1 \) v) \( 27^{x-2}=81^{2 x+1} \)

Ask by Nichols Hilton. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Here are the solutions for each equation: a) \( x = 2 \) d) \( x = 4 \) g) \( x = -3 \) j) \( x = 5 \) m) \( x = 1 \) p) \( x = 1 \) s) \( x = 0 \) v) \( x = -2 \)

Solución

Solve the equation by following steps: - step0: Solve for \(x\): \(-2^{x}=-32\) - step1: Change the signs: \(2^{x}=32\) - step2: Rewrite in exponential form: \(2^{x}=2^{5}\) - step3: Set the exponents equal: \(x=5\) Solve the equation \( 2^{8}=4^{x} \). Solve the equation by following steps: - step0: Solve for \(x\): \(2^{8}=4^{x}\) - step1: Swap the sides: \(4^{x}=2^{8}\) - step2: Rewrite in exponential form: \(2^{2x}=2^{8}\) - step3: Set the exponents equal: \(2x=8\) - step4: Divide both sides: \(\frac{2x}{2}=\frac{8}{2}\) - step5: Divide the numbers: \(x=4\) Solve the equation \( 27^{x-2}=81^{2 x+1} \). Solve the equation by following steps: - step0: Solve for \(x\): \(27^{x-2}=81^{2x+1}\) - step1: Rewrite the expression: \(3^{3x-6}=3^{8x+4}\) - step2: Set the exponents equal: \(3x-6=8x+4\) - step3: Move the expression to the left side: \(3x-8x=4+6\) - step4: Add and subtract: \(-5x=4+6\) - step5: Add and subtract: \(-5x=10\) - step6: Change the signs: \(5x=-10\) - step7: Divide both sides: \(\frac{5x}{5}=\frac{-10}{5}\) - step8: Divide the numbers: \(x=-2\) Solve the equation \( \frac{1}{2^{x}}=8 \). Solve the equation by following steps: - step0: Solve for \(x\): \(\frac{1}{2^{x}}=8\) - step1: Rearrange the terms: \(2^{-x}=8\) - step2: Rewrite in exponential form: \(2^{-x}=2^{3}\) - step3: Set the exponents equal: \(-x=3\) - step4: Change the signs: \(x=-3\) Solve the equation \( 5^{x}=25 \). Solve the equation by following steps: - step0: Solve for \(x\): \(5^{x}=25\) - step1: Rewrite in exponential form: \(5^{x}=5^{2}\) - step2: Set the exponents equal: \(x=2\) Solve the equation \( 3^{x-2}=\frac{1}{3^{x}} \). Solve the equation by following steps: - step0: Solve for \(x\): \(3^{x-2}=\frac{1}{3^{x}}\) - step1: Rewrite the expression: \(3^{x-2}=3^{-x}\) - step2: Set the exponents equal: \(x-2=-x\) - step3: Move the variable to the left side: \(x-2+x=0\) - step4: Add the terms: \(2x-2=0\) - step5: Move the constant to the right side: \(2x=0+2\) - step6: Remove 0: \(2x=2\) - step7: Divide both sides: \(\frac{2x}{2}=\frac{2}{2}\) - step8: Divide the numbers: \(x=1\) Solve the equation \( 10^{x}=1 \). Solve the equation by following steps: - step0: Solve for \(x\): \(10^{x}=1\) - step1: Rewrite in exponential form: \(10^{x}=10^{0}\) - step2: Set the exponents equal: \(x=0\) Solve the equation \( 5^{-2}=\frac{1}{25^{x}} \). Solve the equation by following steps: - step0: Solve for \(x\): \(5^{-2}=\frac{1}{25^{x}}\) - step1: Rearrange the terms: \(5^{-2}=25^{-x}\) - step2: Swap the sides: \(25^{-x}=5^{-2}\) - step3: Rewrite in exponential form: \(5^{-2x}=5^{-2}\) - step4: Set the exponents equal: \(-2x=-2\) - step5: Change the signs: \(2x=2\) - step6: Divide both sides: \(\frac{2x}{2}=\frac{2}{2}\) - step7: Divide the numbers: \(x=1\) Here are the solutions for each equation: a) \( 5^{x} = 25 \) - Solution: \( x = 2 \) d) \( 2^{8} = 4^{x} \) - Solution: \( x = 4 \) g) \( \frac{1}{2^{x}} = 8 \) - Solution: \( x = -3 \) j) \( -2^{x} = -32 \) - Solution: \( x = 5 \) m) \( 5^{-2} = \frac{1}{25^{x}} \) - Solution: \( x = 1 \) p) \( 3^{x-2} = \frac{1}{3^{x}} \) - Solution: \( x = 1 \) s) \( 10^{x} = 1 \) - Solution: \( x = 0 \) v) \( 27^{x-2} = 81^{2x+1} \) - Solution: \( x = -2 \) If you have any further questions or need additional assistance, feel free to ask!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve for \( x \) in each equation, here are the solutions: a) \( 5^{x} = 25 \) Since \( 25 = 5^{2} \), we can equate the exponents: \( x = 2 \). d) \( 2^{8} = 4^{x} \) Rewrite \( 4 \) as \( 2^{2} \): \( 2^{8} = (2^{2})^{x} \) This simplifies to \( 2^{8} = 2^{2x} \). Setting the exponents equal gives \( 8 = 2x \), so \( x = 4 \). g) \( \frac{1}{2^{x}} = 8 \) Rewrite \( 8 \) as \( 2^{3} \): \( \frac{1}{2^{x}} = 2^{3} \) can be written as \( 2^{-x} = 2^{3} \). Setting exponents gives \( -x = 3 \), thus \( x = -3 \). j) \( -2^{x} = -32 \) Remove the negative signs: \( 2^{x} = 32 \) which is \( 2^{5} \). Therefore, \( x = 5 \). m) \( 5^{-2} = \frac{1}{25^{x}} \) Since \( 25 = 5^{2} \), we have \( 25^{x} = (5^{2})^{x} = 5^{2x} \) and can rewrite the left side as: \( 5^{-2} = 5^{-2x} \). This yields \( -2 = -2x \), so \( x = 1 \). p) \( 3^{x-2} = \frac{1}{3^{x}} \) Rewrite \(\frac{1}{3^{x}}\) as \(3^{-x}\): That gives us \( 3^{x-2} = 3^{-x} \). Setting exponents equal yields \( x - 2 = -x \), so \( 2x = 2 \) and \( x = 1 \). s) \( 10^{x} = 1 \) Since \( 1 = 10^{0} \), we have: \( x = 0 \). v) \( 27^{x-2} = 81^{2x+1} \) Rewrite \( 27 \) as \( 3^{3} \) and \( 81 \) as \( 3^{4} \): This gives us \( (3^3)^{x-2} = (3^4)^{2x+1} \) or \( 3^{3(x-2)} = 3^{4(2x+1)} \). Thus, \( 3(x - 2) = 4(2x + 1) \), simplifying to: \( 3x - 6 = 8x + 4 \), leading to \( -5x = 10 \), so \( x = -2 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad