Pregunta
\[ \text{Find } 2011^2 - 2010^2 \text{?} \]
Ask by Ingram Bartlett. in South Africa
Feb 26,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The answer is 4021.
Solución
We can use the difference of squares formula:
a² - b² = (a + b)(a - b).
Here, a = 2011 and b = 2010. Plugging in the values:
2011² - 2010² = (2011 + 2010)(2011 - 2010)
= (4021)(1)
= 4021.
So, the answer is 4021.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Extra Insights
To solve \( 2011^2 - 2010^2 \), we can use the difference of squares formula, which states that \( a^2 - b^2 = (a+b)(a-b) \). Here, let \( a = 2011 \) and \( b = 2010 \). Now, applying the formula: \[ 2011^2 - 2010^2 = (2011 + 2010)(2011 - 2010) \] Calculating each part: \[ 2011 + 2010 = 4021 \] \[ 2011 - 2010 = 1 \] Now, substituting back into the equation: \[ 2011^2 - 2010^2 = 4021 \times 1 = 4021 \] Therefore, the answer is \( \boxed{4021} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium