Pregunta
upstudy study bank question image url

Amy recelved a \( \$ 2100 \) bonus. She decided to invest it in a 5 -year certificate of deposit (CD) with an annual interest rate of \( 1.49 \% \) compounded quarterly, Answer the questions below. Do not round any intermediate computations, and round your final answers to the nearest cent, If necessary, refer to the list of financial formulas. (a) Assuming no withdrawals are made, how much money is in Amy's account after 5 years? (b) How much interest is earned on Amy's investment after 5 years? \( 5 \square \)

Ask by George Higgins. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

After 5 years, Amy has $2,262.11 in her account. She earned $162.11 in interest.

Solución

To solve this problem, we will use the formula for compound interest: \[ A = P \left( 1 + \frac{r}{n} \right)^{nt} \] where: - \( A \) is the amount of money accumulated after \( n \) years, including interest. - \( P \) is the principal amount (initial investment). - \( r \) is the annual interest rate (in decimal form). - \( n \) is the number of times the interest is compounded per year. - \( t \) is the time the money is invested for in years. Given: - \( P = \$2100 \) - \( r = 1.49\% = 0.0149 \) (in decimal form) - \( n = 4 \) (compounded quarterly) - \( t = 5 \) years (a) To find the amount of money in Amy's account after 5 years, we substitute the given values into the formula: \[ A = 2100 \left( 1 + \frac{0.0149}{4} \right)^{4 \cdot 5} \] Now, we can calculate the value of \( A \) using the formula. Calculate the value by following steps: - step0: Calculate: \(2100\left(1+\frac{0.0149}{4}\right)^{4\times 5}\) - step1: Divide the terms: \(2100\left(1+\frac{149}{40000}\right)^{4\times 5}\) - step2: Add the numbers: \(2100\left(\frac{40149}{40000}\right)^{4\times 5}\) - step3: Multiply the numbers: \(2100\left(\frac{40149}{40000}\right)^{20}\) - step4: Simplify: \(2100\times \frac{40149^{20}}{40000^{20}}\) - step5: Rewrite the expression: \(100\times 21\times \frac{40149^{20}}{40000^{20}}\) - step6: Rewrite the expression: \(100\times 21\times \frac{40149^{20}}{10000^{20}\times 4^{20}}\) - step7: Rewrite the expression: \(100\times 21\times \frac{40149^{20}}{100^{40}\times 4^{20}}\) - step8: Reduce the numbers: \(21\times \frac{40149^{20}}{100^{39}\times 4^{20}}\) - step9: Multiply the fractions: \(\frac{21\times 40149^{20}}{100^{39}\times 4^{20}}\) The amount of money in Amy's account after 5 years is approximately $2262.11. (b) To find the interest earned on Amy's investment after 5 years, we subtract the initial investment from the final amount: \[ \text{Interest} = A - P \] Substitute the values: \[ \text{Interest} = 2262.11 - 2100 \] Now, we can calculate the interest earned. Calculate the value by following steps: - step0: Calculate: \(2262.11-2100\) - step1: Subtract the numbers: \(162.11\) The interest earned on Amy's investment after 5 years is $162.11.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

Let's calculate the total amount in Amy's account after 5 years using the formula for compound interest: The formula is: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money): \( \$ 2100 \) - \( r \) is the annual interest rate (decimal): \( 1.49\% = 0.0149 \) - \( n \) is the number of times that interest is compounded per year: \( 4 \) (quarterly) - \( t \) is the number of years the money is invested: \( 5 \) Plugging in the values: \[ A = 2100 \left(1 + \frac{0.0149}{4}\right)^{4 \times 5} \] \[ A = 2100 \left(1 + 0.003725\right)^{20} \] \[ A = 2100 \left(1.003725\right)^{20} \] \[ A \approx 2100 \times 1.078509 \approx 2264.27 \] So, after rounding, the total amount in Amy's account after 5 years is approximately \( \$ 2264.27 \). To calculate the interest earned: Interest earned = Total amount - Principal Interest earned = \( 2264.27 - 2100 \approx 164.27 \) Thus, the interest earned on Amy's investment after 5 years is approximately \( \$ 164.27 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad