Pregunta
upstudy study bank question image url

A woman can bicycle 20 miles in the same time as it takes her to walk 4 miles. She can ride 8 mph faster than she can walk. How fast can she walk? mph

Ask by Ruiz Daniels. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

She can walk at 2 mph.

Solución

Let x be her walking speed in mph. Then her biking speed is x + 8 mph. According to the problem, the time it takes her to bicycle 20 miles is the same as the time it takes her to walk 4 miles. We have:   Time biking = 20 / (x + 8)   Time walking = 4 / x Setting these equal:   20 / (x + 8) = 4 / x Cross-multiply to solve for x:   20x = 4(x + 8)   20x = 4x + 32   20x - 4x = 32   16x = 32   x = 32 / 16   x = 2 So, she can walk at 2 mph.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

Let's dive into the numbers! If we let the woman's walking speed be \( x \) mph, then her cycling speed would be \( x + 8 \) mph. The time taken to walk 4 miles is \( \frac{4}{x} \) hours, and the time taken to bicycle 20 miles is \( \frac{20}{x + 8} \) hours. Since these two times are equal, we can set up the equation: \[ \frac{4}{x} = \frac{20}{x + 8} \] Cross-multiplying gives us: \[ 4(x + 8) = 20x \] This simplifies to: \[ 4x + 32 = 20x \] Bringing all terms involving \( x \) on one side: \[ 32 = 20x - 4x \] \[ 32 = 16x \] \[ x = 2 \] So, she can walk at a speed of 2 mph! Now, let's talk about real-world applications! Knowing these speeds can be quite useful for planning your daily activities—like choosing whether to bike or walk based on your time constraints. If you're late, biking is the clear winner! Plus, this information can help you gauge how long it’ll take to enjoy scenic routes or leisurely strolls without over-exerting yourself. Another neat aspect is the problem-solving approach! Always double-check your setup and simplify wherever possible to avoid mistakes. A common pitfall is overlooking the relationship between the speeds—make sure to define your variables clearly. With practice, you'll become a speed solver in no time!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad