The graph of \( f(x)=\log _{4} x \) is drawn below \( \mathrm{B}(k ; 2) \) is a point on \( f \).
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
In the context of the function \( f(x) = \log_4 x \), point \( B(k; 2) \) means that when \( f(k) = 2 \). To find \( k \), we can use the definition of the logarithm: \( f(k) = 2 \) translates to \( k = 4^2 = 16 \). Hence, \( B(16; 2) \) is a point on the graph of the function, showing that \( x = 16 \) yields a logarithmic value of 2. If you want to see how logarithmic functions apply in real life, consider their utility in measuring the intensity of earthquakes with the Richter scale. Each whole number increase in the Richter scale corresponds to a ten-fold increase in measured amplitude and roughly 31.6 times more energy release! Logarithms help us manage these vast differences in scale, making complex data easier to understand.
