Responder
(a) Jina's monthly payment is \$2157.68.
(b) The total amount she needs to repay the loan is \$25,892.16.
(c) The total interest she will pay is \$892.16.
Solución
To solve Jina's loan problem, we will use the formula for the monthly payment on an amortized loan, which is given by:
\[
M = P \frac{r(1 + r)^n}{(1 + r)^n - 1}
\]
where:
- \( M \) is the monthly payment,
- \( P \) is the principal amount (the loan amount),
- \( r \) is the monthly interest rate (annual interest rate divided by 12),
- \( n \) is the number of payments (loan term in months).
### Given Data:
- \( P = 25000 \)
- Annual interest rate = \( 7.65\% \)
- Monthly interest rate \( r = \frac{7.65}{100} \div 12 \)
- Loan term = 1 year = 12 months, so \( n = 12 \)
Let's calculate \( r \) first:
\[
r = \frac{7.65}{100} \div 12
\]
Now, we can calculate \( M \) using the formula.
### Step 1: Calculate Monthly Interest Rate
\[
r = \frac{7.65}{100} \div 12 = \frac{0.0765}{12}
\]
### Step 2: Calculate Monthly Payment \( M \)
Now we can substitute \( P \), \( r \), and \( n \) into the monthly payment formula.
\[
M = 25000 \frac{r(1 + r)^{12}}{(1 + r)^{12} - 1}
\]
Let's perform these calculations.
### Step 3: Perform Calculations
I'll calculate \( r \) and then \( M \).
1. Calculate \( r \).
2. Calculate \( M \).
Let's proceed with these calculations.
Calculate the value by following steps:
- step0: Calculate:
\(\frac{\frac{7.65}{100}}{12}\)
- step1: Divide the terms:
\(\frac{\frac{153}{2000}}{12}\)
- step2: Multiply by the reciprocal:
\(\frac{153}{2000}\times \frac{1}{12}\)
- step3: Reduce the numbers:
\(\frac{51}{2000}\times \frac{1}{4}\)
- step4: Multiply the fractions:
\(\frac{51}{2000\times 4}\)
- step5: Multiply:
\(\frac{51}{8000}\)
Calculate or simplify the expression \( 25000*(7.65/100/12)*(1+(7.65/100/12))^12/((1+(7.65/100/12))^12-1) \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{25000\left(\frac{\frac{7.65}{100}}{12}\right)\left(1+\left(\frac{\frac{7.65}{100}}{12}\right)\right)^{12}}{\left(\left(1+\left(\frac{\frac{7.65}{100}}{12}\right)\right)^{12}-1\right)}\)
- step1: Remove the parentheses:
\(\frac{25000\left(\frac{\frac{7.65}{100}}{12}\right)\left(1+\left(\frac{\frac{7.65}{100}}{12}\right)\right)^{12}}{\left(1+\left(\frac{\frac{7.65}{100}}{12}\right)\right)^{12}-1}\)
- step2: Divide the terms:
\(\frac{25000\left(\frac{\frac{7.65}{100}}{12}\right)\left(1+\left(\frac{\frac{153}{2000}}{12}\right)\right)^{12}}{\left(1+\left(\frac{\frac{7.65}{100}}{12}\right)\right)^{12}-1}\)
- step3: Divide the terms:
\(\frac{25000\left(\frac{\frac{7.65}{100}}{12}\right)\left(1+\frac{51}{8000}\right)^{12}}{\left(1+\left(\frac{\frac{7.65}{100}}{12}\right)\right)^{12}-1}\)
- step4: Add the numbers:
\(\frac{25000\left(\frac{\frac{7.65}{100}}{12}\right)\left(\frac{8051}{8000}\right)^{12}}{\left(1+\left(\frac{\frac{7.65}{100}}{12}\right)\right)^{12}-1}\)
- step5: Divide the terms:
\(\frac{25000\left(\frac{\frac{7.65}{100}}{12}\right)\left(\frac{8051}{8000}\right)^{12}}{\left(1+\left(\frac{\frac{153}{2000}}{12}\right)\right)^{12}-1}\)
- step6: Divide the terms:
\(\frac{25000\left(\frac{\frac{7.65}{100}}{12}\right)\left(\frac{8051}{8000}\right)^{12}}{\left(1+\frac{51}{8000}\right)^{12}-1}\)
- step7: Add the numbers:
\(\frac{25000\left(\frac{\frac{7.65}{100}}{12}\right)\left(\frac{8051}{8000}\right)^{12}}{\left(\frac{8051}{8000}\right)^{12}-1}\)
- step8: Divide the terms:
\(\frac{25000\left(\frac{\frac{153}{2000}}{12}\right)\left(\frac{8051}{8000}\right)^{12}}{\left(\frac{8051}{8000}\right)^{12}-1}\)
- step9: Divide the terms:
\(\frac{25000\times \frac{51}{8000}\left(\frac{8051}{8000}\right)^{12}}{\left(\frac{8051}{8000}\right)^{12}-1}\)
- step10: Multiply:
\(\frac{\frac{51\times 8051^{12}}{2^{75}\times 5^{34}}}{\left(\frac{8051}{8000}\right)^{12}-1}\)
- step11: Subtract the numbers:
\(\frac{\frac{51\times 8051^{12}}{2^{75}\times 5^{34}}}{\frac{8051^{12}-8000^{12}}{8000^{12}}}\)
- step12: Multiply by the reciprocal:
\(\frac{51\times 8051^{12}}{2^{75}\times 5^{34}}\times \frac{8000^{12}}{8051^{12}-8000^{12}}\)
- step13: Rewrite the expression:
\(\frac{51\times 8051^{12}}{2^{75}\times 5^{34}}\times \frac{64^{12}\times 125^{12}}{8051^{12}-8000^{12}}\)
- step14: Rewrite the expression:
\(\frac{51\times 8051^{12}}{2^{75}\times 5^{34}}\times \frac{2^{72}\times 125^{12}}{8051^{12}-8000^{12}}\)
- step15: Reduce the numbers:
\(\frac{51\times 8051^{12}}{2^{3}\times 5^{34}}\times \frac{125^{12}}{8051^{12}-8000^{12}}\)
- step16: Rewrite the expression:
\(\frac{51\times 8051^{12}}{2^{3}\times 5^{34}}\times \frac{5^{36}}{8051^{12}-8000^{12}}\)
- step17: Reduce the numbers:
\(\frac{51\times 8051^{12}}{2^{3}}\times \frac{5^{2}}{8051^{12}-8000^{12}}\)
- step18: Multiply the fractions:
\(\frac{51\times 8051^{12}\times 5^{2}}{2^{3}\left(8051^{12}-8000^{12}\right)}\)
- step19: Multiply:
\(\frac{1275\times 8051^{12}}{8\times 8051^{12}-8\times 8000^{12}}\)
### Step 1: Calculate Monthly Interest Rate
The monthly interest rate \( r \) is calculated as follows:
\[
r = \frac{7.65}{100} \div 12 \approx 0.006375
\]
### Step 2: Calculate Monthly Payment \( M \)
Now substituting \( P = 25000 \), \( r \approx 0.006375 \), and \( n = 12 \) into the monthly payment formula:
\[
M = 25000 \frac{0.006375(1 + 0.006375)^{12}}{(1 + 0.006375)^{12} - 1}
\]
Calculating \( M \):
\[
M \approx 25000 \frac{0.006375(1.079646)}{0.079646}
\]
Calculating the values:
\[
M \approx 25000 \frac{0.006875}{0.079646} \approx 25000 \times 0.086307 \approx 2157.675
\]
### Final Monthly Payment
Rounding to the nearest cent, Jina's monthly payment is:
\[
M \approx 2157.68
\]
### Step 3: Total Amount to Repay the Loan
To find the total amount to repay the loan, we multiply the monthly payment by the number of payments:
\[
\text{Total Repayment} = M \times n = 2157.68 \times 12
\]
Calculating this:
\[
\text{Total Repayment} \approx 25892.16
\]
### Step 4: Total Amount of Interest Paid
To find the total interest paid, we subtract the principal from the total repayment:
\[
\text{Total Interest} = \text{Total Repayment} - P = 25892.16 - 25000
\]
Calculating this:
\[
\text{Total Interest} \approx 892.16
\]
### Summary of Results
(a) Jina's monthly payment: \( \$ 2157.68 \)
(b) Total amount to repay the loan: \( \$ 25892.16 \)
(c) Total amount of interest she will pay: \( \$ 892.16 \)
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución