Pregunta
upstudy study bank question image url

\begin{tabular}{|l} Determine if the side lengths could form a triangl \\ \hline \( 1.16 \mathrm{~m}, 21 \mathrm{~m}, 39 \mathrm{~m} \) \\ 3\end{tabular}

Ask by Franklin Sullivan. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The side lengths 1.16 m, 21 m, and 39 m cannot form a triangle because the sum of the two smaller sides (1.16 m + 21 m = 22.16 m) is less than the largest side (39 m).

Solución

To determine if three side lengths can form a triangle, we must check that the sum of any two sides is greater than the third side. The three conditions are: 1) 1.16 m + 21 m > 39 m 2) 1.16 m + 39 m > 21 m 3) 21 m + 39 m > 1.16 m Let's check these one by one. 1. 1.16 m + 21 m = 22.16 m, which is NOT greater than 39 m. 2. 1.16 m + 39 m = 40.16 m, which is greater than 21 m. 3. 21 m + 39 m = 60 m, which is greater than 1.16 m. Since the first condition fails (22.16 m is less than 39 m), the side lengths do not satisfy the triangle inequality theorem and therefore cannot form a triangle.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To determine if the given side lengths can form a triangle, we can use the triangle inequality theorem. This theorem states that for any triangle with sides \(a\), \(b\), and \(c\), the following conditions must hold true: \(a + b > c\), \(a + c > b\), and \(b + c > a\). For the sides lengths \(1.16 \, \mathrm{m}\), \(21 \, \mathrm{m}\), and \(39 \, \mathrm{m}\): 1. \(1.16 + 21 = 22.16\) which is greater than \(39\) (fails). 2. \(1.16 + 39 = 40.16\) which is greater than \(21\) (true). 3. \(21 + 39 = 60\) which is greater than \(1.16\) (true). Since \(1.16 + 21\) is not greater than \(39\), the lengths \(1.16 \, \mathrm{m}\), \(21 \, \mathrm{m}\), and \(39 \, \mathrm{m}\) cannot form a triangle. --- For those who love trivia, did you know that the triangle inequality is used not just in geometry, but also in various fields like computer graphics and engineering? It helps ensure stability in structures and realistic modeling in animations! If you're looking to explore more about triangles, check out resources on Euclidean geometry for the foundational theories, or dive into trigonometry for applications in real-world scenarios, like navigation or architecture!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad