15. [-/0.83 Points] DETAILS MY NOTES SCALCET9 2.6.049. Find the horizontal and vertical asymptotes of the curve. You may want to use a graphing calculator (or computer) to check your work by graphing the curve and estimating the asymptotes. (Enter your answers as comma-separated lists. If an answer does not exist, enter DNE.) \[ y=\frac{4 x^{2}+x-3}{x^{2}+x-2} \] \( x= \) \( y= \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To find the vertical asymptotes, we look for values of \( x \) that make the denominator zero (but not the numerator). Set the denominator equal to zero: \[ x^{2} + x - 2 = 0 \] Factoring gives: \[ (x - 1)(x + 2) = 0 \] So, \( x = 1 \) and \( x = -2 \) are the vertical asymptotes. For horizontal asymptotes, we compare the degrees of the polynomial in the numerator and the denominator. Both polynomials are quadratic (degree 2), so we divide the leading coefficients: \[ y = \frac{4}{1} = 4 \] Thus, the horizontal asymptote is \( y = 4 \). So the answers are: \( x = 1, -2 \) \( y = 4 \) Now you can check with a graphing calculator to see how the graph behaves near these asymptotes!
