Pregunta
\[ \text{Find } 2011^2 - 2010^2 \text{?} \]
Ask by Kelly Warner. in South Africa
Feb 27,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The answer is 4021.
Solución
We can use the difference of squares formula, which states:
a² - b² = (a - b)(a + b)
In this problem, let a = 2011 and b = 2010. Applying the formula:
2011² - 2010² = (2011 - 2010)(2011 + 2010)
= (1)(4021)
= 4021
So, the answer is 4021.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


The Deep Dive
You can simplify the expression \(2011^2 - 2010^2\) using the difference of squares formula, which is \(a^2 - b^2 = (a - b)(a + b)\). Here, let \(a = 2011\) and \(b = 2010\). Calculating it gives: \[ 2011^2 - 2010^2 = (2011 - 2010)(2011 + 2010) = (1)(4021) = 4021 \] So, \(2011^2 - 2010^2 = 4021\).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium