Pregunta
upstudy study bank question image url

possible Angelo's kayak travels \( 15 \mathrm{~km} / \mathrm{h} \) in still water. If the river's current flows at a rate of \( 3 \mathrm{~km} / \mathrm{h} \), how long will it take to travel 33 km downstream? It will take \( \square \) hours. (Round to the nearest tenth.)

Ask by Barker Williams. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

It will take approximately 1.8 hours to travel 33 km downstream.

Solución

To solve the problem, we need to determine how long it will take Angelo to travel 33 km downstream in a river with a current. ### Step 1: Determine the effective speed downstream When traveling downstream, the speed of the kayak is increased by the speed of the river's current. Therefore, we can calculate the effective speed as follows: \[ v_d = v_k + v_c \] Where: - \( v_d \) = effective speed downstream - \( v_k = 15 \, \text{km/h} \) (speed of the kayak in still water) - \( v_c = 3 \, \text{km/h} \) (speed of the river's current) Substituting the values: \[ v_d = 15 + 3 = 18 \, \text{km/h} \] ### Step 2: Calculate the time to travel 33 km downstream The time taken to travel a certain distance can be calculated using the formula: \[ t = \frac{d}{v} \] Where: - \( t \) = time - \( d = 33 \, \text{km} \) (distance to travel) - \( v = 18 \, \text{km/h} \) (effective speed downstream) Substituting the values: \[ t = \frac{33}{18} \] ### Step 3: Perform the calculation Now, we will calculate the time: \[ t = \frac{33}{18} \approx 1.8333 \, \text{hours} \] ### Step 4: Round to the nearest tenth Rounding \( 1.8333 \) to the nearest tenth gives us: \[ t \approx 1.8 \, \text{hours} \] Thus, it will take approximately \( 1.8 \) hours for Angelo to travel 33 km downstream.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

When kayaking downstream, the speed of the kayak is increased by the speed of the current. So, you add the speeds: \( 15 \mathrm{~km/h} + 3 \mathrm{~km/h} = 18 \mathrm{~km/h} \). To find the time it takes to travel 33 km downstream, you can use the formula \( \text{time} = \frac{\text{distance}}{\text{speed}} \). Plugging in the numbers gives you \( \text{time} = \frac{33 \mathrm{~km}}{18 \mathrm{~km/h}} \approx 1.8333 \) hours. Rounding to the nearest tenth, it will take approximately \( 1.8 \) hours.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad