Pregunta
upstudy study bank question image url

El sistema de ecuaciones lineales \( \left\{\begin{array}{l}k x+y+z=1 \\ x+k y+z=1 \\ x+y+k z=1\end{array}\right. \). Tiene solución unica si: a. \( k \in \mathbb{R}-\{-2\} \). b. \( k \in \mathbb{R}-\{0\} \). c. \( k \in \mathbb{R} \) d. No hay solución única para ningun valor de \( k \). e. \( k \in \mathbb{R}-\{1,-2\} \)

Ask by Wang Schwartz. in Colombia
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

La solución única existe si \( k \) no es igual a 1 ni a –2. Por lo tanto, la respuesta correcta es la opción e: \( k \in \mathbb{R} - \{1, -2\} \).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Extra Insights

Para determinar cuándo el sistema de ecuaciones lineales tiene solución única, podemos usar el concepto de determinante. Si el determinante de la matriz de coeficientes es diferente de cero, entonces el sistema tiene solución única. La matriz de coeficientes de tu sistema es: \[ \begin{pmatrix} k & 1 & 1 \\ 1 & k & 1 \\ 1 & 1 & k \end{pmatrix} \] Calculando el determinante, encontramos que es igual a \( (k-1)(k^2 + k - 2) \). Esto implica que el determinante se anula cuando \( k=1 \) o \( k=-2 \). Por lo tanto, el sistema tiene solución única para \( k \in \mathbb{R} - \{1, -2\} \). Para reforzar, es fundamental siempre comprobar el determinante en sistemas de ecuaciones lineales. Si resulta cero, significa que las ecuaciones son dependientes o no se intersectan, por lo tanto, no hay solución única. Este es un paso crítico que a menudo se pasa por alto, generando confusión en los resultados.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad