Pregunta
upstudy study bank question image url

What property of real numbers does the statement demonstrate? \( \begin{array}{ll}a+b=b+a \\ \text { A. Additive Inverse } \\ \begin{array}{ll}\text { B. Commutative Property of Addition } \\ \text { C. Associative Property of Addition }\end{array}\end{array} \) Distributive Property

Ask by Wright Schultz. in the United States
Jan 31,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The statement \( a + b = b + a \) shows the **Commutative Property of Addition**.

Solución

The statement \( a + b = b + a \) demonstrates the **Commutative Property of Addition**. **Explanation:** - **Commutative Property of Addition:** This property states that the order in which two numbers are added does not change the sum. In other words, \( a + b = b + a \). - **Additive Inverse:** This property involves adding a number and its inverse (e.g., \( a + (-a) = 0 \)), which is not relevant to the given statement. - **Associative Property of Addition:** This property involves the grouping of three or more numbers, such as \( (a + b) + c = a + (b + c) \), which is also not related to the given statement. - **Distributive Property:** This property involves multiplying a number by a sum, such as \( a \times (b + c) = a \times b + a \times c \), which is unrelated to the provided equation. **Answer:** **B. Commutative Property of Addition**

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

The statement \( a+b=b+a \) showcases that the order of the numbers being added doesn't affect their sum, which is a super fun concept in mathematics! This means you can rearrange the order without any worries, like a dance party where everyone can swap partners and still have a blast! In real-world scenarios, this property is incredibly handy. For instance, if you're planning a group outing and each friend contributes a different amount to the bill, it doesn’t matter in which order you add their contributions together; you’ll still arrive at the same total amount. So, feel free to jumble those numbers without fear!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad