Pregunta
upstudy study bank question image url

\begin{tabular}{|c|l|}\hline & \( \begin{array}{l}\bigcirc \text { The system has no solution. } \\ \text { System A } \\ \text { The system has a unique solution: } \\ 5 x+3 y=2 \\ 4 x+3 y=1\end{array} \) \\ \( (x, y)=(\square, \square) \) \\ & The system has infinitely many solutions. \end{tabular}

Ask by Davey Little. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The system has a unique solution: (x, y) = (1, –1).

Solución

We are given the following system of equations (System A):   5x + 3y = 2   4x + 3y = 1 Step 1. Subtract the second equation from the first:   (5x + 3y) − (4x + 3y) = 2 − 1   (5x − 4x) + (3y − 3y) = 1   x = 1 Step 2. Substitute x = 1 into either equation. Using the first:   5(1) + 3y = 2   5 + 3y = 2   3y = 2 − 5 = –3   y = –1 Thus, the unique solution is (x, y) = (1, –1). Among the answer choices provided, you should circle the option:   "The system has a unique solution:     (x, y) = (1, –1)"

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

The given system of equations is: 1. \( 5x + 3y = 2 \) 2. \( 4x + 3y = 1 \) To find the unique solution, we can use the elimination method. First, we can subtract the second equation from the first: \[ (5x + 3y) - (4x + 3y) = 2 - 1 \] This simplifies to: \[ x = 1 \] Now, we can substitute \( x \) back into one of the original equations to find \( y \). Using the first equation: \[ 5(1) + 3y = 2 \] leads to: \[ 5 + 3y = 2 \quad \Rightarrow \quad 3y = -3 \quad \Rightarrow \quad y = -1 \] So, the solution to the system is: \[ (x, y) = (1, -1) \] As for the other descriptions, when you see a system with no solution, it often indicates parallel lines (e.g., \( 5x + 3y = 2 \) and \( 5x + 3y = 3 \)). In contrast, infinitely many solutions arise when two equations are actually the same line, leading to an overlap. So, here we have our unique solution boxed neatly as \( (1, -1) \)!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad