Question 1 (1 point) What is the rate of growth or rate of decay? \[ y=5575(0.65)^{x} \] a \( x \) b 5575 c \( \quad .65 \) d 1
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
The equation you provided, \( y = 5575(0.65)^{x} \), exhibits decay rather than growth because the base is less than 1. Specifically, the 0.65 means that for each unit increase in \( x \), the value of \( y \) is multiplied by 0.65, indicating a reduction over time. This is a common feature in exponential decay models, such as those used to track radioactive decay or depreciation of assets. In this context, the rate of decay can be extracted from the base of the exponential. The specific decay rate of 0.65 indicates a 35% decrease (which is 1 - 0.65) in the value for every increase of 1 in \( x \). This rate is pivotal when modeling systems that lose value over time, such as a car depreciating on the lot!
