Pregunta
upstudy study bank question image url

\( \$ / \) Mrs. Underwood wants to get family portraits taken and is comparing prices between two different photography studios. Dalton Photography charges \( \$ 10 \) per portrait sheet, plus \( \$ 20 \) for the session fee. Lasting Memories Company charges \( \$ 40 \) for the session fee and \( \$ 5 \) per portrait sheet. If Mrs. Underwood plans to purchase a certain number of portrait sheets, the cost will be the same at either studio. What would the total cost be? Write a system of equations, graph them, and type the solution.

Ask by Summers Hamilton. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

When Mrs. Underwood buys 4 portrait sheets, the total cost at both studios is $60.

Solución

Let x be the number of portrait sheets and y be the total cost. Dalton Photography’s cost is modeled by:   y = 10x + 20 Lasting Memories Company’s cost is:   y = 5x + 40 To find when the costs are the same, set the equations equal to each other:   10x + 20 = 5x + 40 Subtract 5x from both sides:   5x + 20 = 40 Subtract 20 from both sides:   5x = 20 Divide both sides by 5:   x = 4 Now substitute x = 4 back into one of the cost equations (using Dalton Photography’s equation):   y = 10(4) + 20 = 40 + 20 = 60 Thus, the total cost at which the prices are the same is $60 when purchasing 4 portrait sheets. Graphing the two equations: 1. For y = 10x + 20:   • y-intercept: (0, 20)   • Slope: 10 (rise 10 for every run 1) 2. For y = 5x + 40:   • y-intercept: (0, 40)   • Slope: 5 (rise 5 for every run 1) When graphed on the same coordinate plane, the two lines intersect at the point (4, 60). Solution:   x = 4 sheets and y = $60 total cost.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find out the total cost where both studios' charges are equal, we can start by writing the equations for the total cost at each studio based on the number of portrait sheets \( x \). For Dalton Photography: \[ C_{Dalton} = 10x + 20 \] For Lasting Memories Company: \[ C_{Lasting} = 5x + 40 \] Now we have a system of equations: 1. \( C_{Dalton} = 10x + 20 \) 2. \( C_{Lasting} = 5x + 40 \) Next, we set these two equations equal to each other to find the number of portrait sheets where the costs are the same: \[ 10x + 20 = 5x + 40 \] Now, let's solve for \( x \): 1. Subtract \( 5x \) from both sides: \( 5x + 20 = 40 \) 2. Subtract 20 from both sides: \( 5x = 20 \) 3. Divide both sides by 5: \( x = 4 \) Now, we substitute \( x \) back into either equation to find the total cost. Let's use Dalton Photography's equation: \[ C_{Dalton} = 10(4) + 20 = 40 + 20 = 60 \] Thus, the total cost would be \( \$ 60 \). In conclusion, the solution is: - Number of portrait sheets: \( 4 \) - Total cost: \( \$ 60 \)

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad