Pregunta
upstudy study bank question image url

What is an equation of the line that passes through the points \( (5,-6) \) and \( (-5,-2) \) ?

Ask by Martinez Cole. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The equation of the line is \( y = -\frac{2}{5}x - 4 \).

Solución

To find the equation of the line that passes through the points (5, -6) and (-5, -2), we start by calculating the slope (m) using the slope formula:   m = (y₂ - y₁) / (x₂ - x₁) Labeling the points:   (5, -6) = (x₁, y₁)   (-5, -2) = (x₂, y₂) Substituting the coordinates:   m = (-2 - (-6)) / (-5 - 5)   m = (4) / (-10)   m = -2/5 Next, we use the point-slope form of the line equation:   y - y₁ = m (x - x₁) Using the point (5, -6):   y - (-6) = (-2/5)(x - 5)   y + 6 = (-2/5)(x - 5) Now, solve for y by subtracting 6 from both sides:   y = (-2/5)(x - 5) - 6 Expanding the right side:   y = (-2/5)x + 2 - 6   y = (-2/5)x - 4 Thus, the equation of the line is:   y = (-2/5)x - 4

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the equation of the line that passes through the points \( (5,-6) \) and \( (-5,-2) \), we first calculate the slope \( m \) using the formula \( m = \frac{y_2 - y_1}{x_2 - x_1} \). Plugging in our points, we find \( m = \frac{-2 - (-6)}{-5 - 5} = \frac{4}{-10} = -\frac{2}{5} \). Next, we can use the point-slope form of a line, \( y - y_1 = m(x - x_1) \). Using point \( (5, -6) \), we get \( y + 6 = -\frac{2}{5}(x - 5) \). Simplifying, we have \( y = -\frac{2}{5}x - 4 \). Thus, the equation of the line is \( y = -\frac{2}{5}x - 4 \). One fun fact about linear equations is that they can also represent many real-world situations—think about things like speed over time or budgeting. They help us visualize relationships and trends, making it easier to grasp changes and predict outcomes! Also, when solving for equations and slopes, always double-check your calculations; errors in arithmetic can lead you astray. A common mistake is misplacing the negative sign or confusing which point to use first—taking a moment to verify your work can save you from headaches down the line!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad