Pregunta
upstudy study bank question image url

(4) \( \frac{2 \tan \left(x+180^{\circ}\right) \cos \left(720^{\circ}-x\right)}{\cos \left(450^{\circ}+x\right)}+1 \) (5) \( \frac{\cos \left(90^{\circ}-2 x\right)}{2-2 \sin (-x) \cos \left(90^{\circ}+x\right)} \) (6) \( \frac{\cos ^{2}\left(180^{\circ}-\theta\right)-\cos ^{2} \alpha-\sin ^{2}\left(\alpha-180^{\circ}\right)}{\cos \left(360^{\circ}-2 \theta\right)-1} \)

Ask by Gonzalez Gibson. in South Africa
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(4) –1 (5) tan x (6) ½

Solución

We will simplify each expression step‐by‐step. ───────────────────────────── (4) Expression:   [2 · tan(x + 180°) · cos(720° – x)] / cos(450° + x) + 1 Step 1. Use periodicity:  • tan(x + 180°) = tan x   (since the period of tan is 180°)  • 720° = 2·360°, so cos(720° – x) = cos(–x) = cos x   (cosine is an even function) Now the expression becomes:   [2 · tan x · cos x] / cos(450° + x) + 1 Step 2. Recall that tan x = sin x/cos x; multiplying by cos x gives:   tan x · cos x = sin x Thus, the expression is now:   [2 sin x] / cos(450° + x) + 1 Step 3. Simplify cos(450° + x):   450° = 360° + 90° so,   cos(450° + x) = cos(360° + 90° + x) = cos(90° + x)   But cos(90° + x) = – sin x Now our expression is:   [2 sin x] / (– sin x) + 1 = –2 + 1 = –1 ───────────────────────────── (5) Expression:   cos(90° – 2x) / [2 – 2 sin(–x) cos(90° + x)] Step 1. Simplify the numerator:   cos(90° – 2x) = sin(2x)   (since cos(90° – θ) = sin θ) Step 2. Simplify the denominator:  • sin(–x) = – sin x   (sine is odd)  • cos(90° + x) = – sin x   (since cos(90° + x) = – sin x) Multiplying these:   sin(–x) cos(90° + x) = (– sin x)(– sin x) = sin² x Then the denominator becomes:   2 – 2 sin² x = 2(1 – sin² x) = 2 cos² x    (using sin² x + cos² x = 1) Step 3. Now the expression is:   sin(2x) / (2 cos² x) Recall that:   sin(2x) = 2 sin x cos x So,   [2 sin x cos x] / (2 cos² x) = sin x / cos x = tan x ───────────────────────────── (6) Expression:   [cos²(180° – θ) – cos²α – sin²(α – 180°)] / [cos(360° – 2θ) – 1] Step 1. Simplify the numerator term-by-term.  • cos(180° – θ) = – cos θ   (cosine identity), hence:   cos²(180° – θ) = cos² θ  • For sin²(α – 180°):   sin(α – 180°) = – sin(180° – α)   (sine is odd)   But sin(180° – α) = sin α, so   sin(α – 180°) = – sin α,   and thus sin²(α – 180°) = sin² α Now the numerator is:   cos² θ – cos²α – sin²α But note that:   cos²α + sin²α = 1 So, the numerator becomes:   cos² θ – 1 = – sin² θ    (since cos² θ – 1 = – sin² θ) Step 2. Simplify the denominator.   cos(360° – 2θ) = cos 2θ   (cosine is periodic with period 360°) Thus, the denominator is:   cos 2θ – 1 Recall the double-angle identity:   cos 2θ – 1 = – 2 sin² θ Step 3. Now, the entire expression becomes:   (– sin² θ) / (– 2 sin² θ) = 1/2 ───────────────────────────── Final Answers:  (4) simplifies to –1  (5) simplifies to tan x  (6) simplifies to ½

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

The tangent function is periodic with a period of \(180^{\circ}\), which simplifies \( \tan(x + 180^{\circ}) \) to \( \tan(x) \). Also, cosine has both periodicity and symmetry properties that can lead to simplifications in trigonometric identities. For example, \( \cos(720^{\circ} - x) \) can be simplified as \( \cos(-x) = \cos(x) \) since cosine is an even function. Real-world applications of trigonometric functions span from engineering to music. For instance, in electrical engineering, sine and cosine functions model alternating current circuits. Similarly, in audio signal processing, the principles of these trigonometric functions are crucial for understanding sound waves and their harmonics, laying the groundwork for everything from music production to telecommunications!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad