Pregunta
upstudy study bank question image url

How much would you need to deposit in an account now in order to have \( \$ 6000 \) in the account in 10 years? Assume the account earns \( 4 \% \) interest compounded monthly. Round to the nearest cent.

Ask by Daniel O'Quinn. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

You need to deposit approximately \$4,022.34 now to have \$6,000 in 10 years with a 4% annual interest rate compounded monthly.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Extra Insights

To find out how much you need to deposit now (the present value) to have $6000 in 10 years with an interest rate of 4% compounded monthly, we can use the formula for present value: \[ PV = \frac{FV}{(1 + r/n)^{nt}} \] Where: - \(FV\) is the future value ($6000) - \(r\) is the annual interest rate (0.04) - \(n\) is the number of times interest is compounded per year (12) - \(t\) is the number of years (10) Plugging in the values: \[ PV = \frac{6000}{(1 + 0.04/12)^{12 \times 10}} = \frac{6000}{(1 + 0.003333)^{120}} \] Calculating: \[ PV = \frac{6000}{(1.003333)^{120}} \approx \frac{6000}{1.49182} \approx 4023.03 \] So, you would need to deposit approximately **$4023.03** now in order to have $6000 in 10 years. One interesting fact about compound interest is that it’s often referred to as "the eighth wonder of the world." This is because of its ability to grow investments exponentially over time, illustrating that patience can lead to significant financial gains. Understanding this can turn saving into powerful wealth-building! If you're looking to enhance your financial literacy, consider reading "The Little Book of Common Sense Investing" by John C. Bogle. It explores timeless investment strategies that can help you grow your wealth over time, including insights about the power of compounding and smart saving habits. It's engaging and informative, perfect for anyone wanting to take control of their financial future!

preguntas relacionadas

Latest Pre Calculus Questions

1.3.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.4 CASE 3: \( r=1 \) 1.4.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=1 \text { ? } \] 1.4.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.5 CASE 4: \( r=-1 \) 1.5.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=-1 ? \] 1.5.2 Do the sums above approach some finite particular number as \( n \rightarrow \infty \) i.e. is the sequence divergent or convergent? 1.6 CASE 5: \( -1<r<1 \) REQUIREMENTS: - One A4 papers - Provided grid 1.6.1 Write THREE possible values of \( r \) such that \( -1<r<1 \). 1.6.2 Step 1. Cut the A4 size paper along the longest side into two equal Rectangles and define their areas to be 16 unit \( ^{2} \). 1.6.3 Step 2. Place one half of the rectangle in Step 1 on the desktop and cut the other half along the longest side in to two equal rectangles. 1.6.4 Step 3. Place one half of the rectangle in Step 2 on the desktop and cut the other half along the longest side into two equal rectangles. 1.6.5 Step 4. Continue with the procedures from Step 3 until you find it too difficult to fold and cut the piece of paper you are holding. 1.6.6 Step 5. The first piece of paper you placed on the desktop has an area of \( \frac{1}{2} \) the area of the A4. The second piece of paper has an area of \( \frac{1}{4} \) the area of the A4. Write the areas of the next three pieces of paper. 1.6.7 Explain why these areas form a geometric seauence
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad