Pregunta
upstudy study bank question image url

Solve the following inequality and graph the solution. Answer using interval \( x^{2}+2 x-3 \geq 0 \)

Ask by Mckenzie Chan. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solution to the inequality \( x^{2} + 2x - 3 \geq 0 \) is \( x \leq -3 \) or \( x \geq 1 \). In interval notation, this is written as \( (-\infty, -3] \cup [1, \infty) \).

Solución

We start with the inequality   x² + 2x – 3 ≥ 0. Step 1. Factor the quadratic:   x² + 2x – 3 = (x – 1)(x + 3). Step 2. Find the zeros by setting each factor equal to 0:   x – 1 = 0 ⟹ x = 1,   x + 3 = 0 ⟹ x = –3. Step 3. Determine the sign in the intervals created by the zeros:  • For x < –3 (e.g., x = –4):   (x – 1) is negative and (x + 3) is also negative, so their product is positive.  • For –3 < x < 1 (e.g., x = 0):   (x – 1) is negative and (x + 3) is positive, so their product is negative.  • For x > 1 (e.g., x = 2):   Both (x – 1) and (x + 3) are positive, so their product is positive. Since we need (x – 1)(x + 3) to be greater than or equal to 0, we include the intervals where the expression is positive or zero. Note that at x = –3 and x = 1 the expression equals 0. Step 4. Write the solution in interval notation:   (–∞, –3] ∪ [1, ∞). Graph of the solution:  Number line representation:   <------●===========○-----------●========>    –∞ –3 (no solution) 1 ∞ Here, ● at –3 and 1 indicates that these endpoints are included (closed circles), and the shaded regions extend to negative infinity before –3 and positive infinity after 1. Final Answer in Interval Notation:   (–∞, –3] ∪ [1, ∞).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the inequality \( x^{2} + 2x - 3 \geq 0 \), we first find the roots of the corresponding equation \( x^{2} + 2x - 3 = 0 \) using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1 \), \( b = 2 \), and \( c = -3 \). Plugging in these values, we calculate: \[ x = \frac{-2 \pm \sqrt{2^2 - 4(1)(-3)}}{2(1)} = \frac{-2 \pm \sqrt{4 + 12}}{2} = \frac{-2 \pm \sqrt{16}}{2} = \frac{-2 \pm 4}{2} \] This gives us the roots \( x = 1 \) and \( x = -3 \). Next, we analyze the sign of the quadratic expression in the intervals determined by the roots: \( (-\infty, -3) \), \( (-3, 1) \), and \( (1, \infty) \). 1. In the interval \( (-\infty, -3) \), choose \( x = -4 \): \( (-4)^2 + 2(-4) - 3 = 16 - 8 - 3 = 5 \) which is positive. 2. In the interval \( (-3, 1) \), choose \( x = 0 \): \( 0^2 + 2(0) - 3 = -3 \) which is negative. 3. In the interval \( (1, \infty) \), choose \( x = 2 \): \( 2^2 + 2(2) - 3 = 4 + 4 - 3 = 5 \) which is positive. Now, putting this together, the solution to the inequality \( x^{2} + 2x - 3 \geq 0 \) means we include the intervals where the expression is positive or zero. Therefore, the solution is: \[ (-\infty, -3] \cup [1, \infty) \] For graphing, plot the points \( -3 \) and \( 1 \) on a number line. Shade the regions to the left of \( -3 \) (including \( -3 \)) and to the right of \( 1 \) (including \( 1 \)) to demonstrate the solution visually. Final answer in interval notation: \[ (-\infty, -3] \cup [1, \infty) \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad