Solve for \( w \). \[ \frac{w}{w+4}=\frac{w+18}{w^{2}-16}-\frac{2}{w-4} \] If there is more than one solution, separate them with commas. If there is no solution, click on "No solution".
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To solve the equation \[ \frac{w}{w+4}=\frac{w+18}{w^{2}-16}-\frac{2}{w-4}, \] first, recognize that \( w^2 - 16 \) can be factored as \( (w - 4)(w + 4) \). Thus, we can rewrite the equation: \[ \frac{w}{w + 4} = \frac{w + 18}{(w - 4)(w + 4)} - \frac{2}{w - 4}. \] Next, find a common denominator for the right side. The common denominator will be \( (w - 4)(w + 4) \): \[ \frac{w + 18 - 2(w + 4)}{(w - 4)(w + 4)}. \] Simplify the numerator: \[ w + 18 - 2w - 8 = -w + 10. \] So the equation becomes: \[ \frac{w}{w + 4} = \frac{-w + 10}{(w - 4)(w + 4)}. \] Now cross-multiply: \[ w(-w + 10) = (w + 4)(w + 4). \] Expanding both sides gives: \[ -w^2 + 10w = w^2 + 8w + 16. \] Rearranging all terms to one side results in: \[ -w^2 + 10w - w^2 - 8w - 16 = 0 \rightarrow -2w^2 + 2w - 16 = 0. \] Dividing the entire equation by -2 yields: \[ w^2 - w + 8 = 0. \] Next, we use the quadratic formula to solve for \( w \): \[ w = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{1 \pm \sqrt{1^2 - 4(1)(8)}}{2(1)} = \frac{1 \pm \sqrt{1 - 32}}{2}. \] The discriminant \( 1 - 32 = -31 \) is negative, indicating there are no real solutions. Therefore, the answer is: No solution.
