Pregunta

\( \int _{1}^{2}\sqrt {1+(x^{2}-\frac{1}{4x^{2}})^{2}} d x \)

Ask by Joseph Moreno. in Brazil
Dec 16,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

A integral \( \int _{1}^{2}\sqrt {1+(x^{2}-\frac{1}{4x^{2}})^{2}} d x \) simplifica para \( \frac{59}{24} \) ou aproximadamente 2.4583.

Solución

It seems that the integral provided cannot be directly calculated. Let's simplify the expression inside the square root first to make it more manageable. Given: \( \int _{1}^{2}\sqrt {1+(x^{2}-\frac{1}{4x^{2}})^{2}} d x \) Simplify the expression inside the square root: \[ 1 + (x^{2} - \frac{1}{4x^{2}})^{2} = 1 + x^{4} - \frac{1}{2} + \frac{1}{16x^{4}} = x^{4} + \frac{1}{2} + \frac{1}{16x^{4}} \] Now, the integral becomes: \[ \int _{1}^{2}\sqrt {x^{4} + \frac{1}{2} + \frac{1}{16x^{4}}} d x \] This integral can be further simplified and calculated. Let's proceed with the calculation. Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int_{1}^{2} \sqrt{x^{4}+\frac{1}{2}+\frac{1}{16x^{4}}} dx\) - step1: Calculate: \(\int_{1}^{2} x^{2}+\frac{1}{4x^{2}} dx\) - step2: Evaluate the integral: \(\int x^{2}+\frac{1}{4x^{2}} dx\) - step3: Use properties of integrals: \(\int x^{2} dx+\int \frac{1}{4x^{2}} dx\) - step4: Evaluate the integral: \(\frac{x^{3}}{3}+\int \frac{1}{4x^{2}} dx\) - step5: Evaluate the integral: \(\frac{x^{3}}{3}-\frac{1}{4x}\) - step6: Return the limits: \(\left(\frac{x^{3}}{3}-\frac{1}{4x}\right)\bigg |_{1}^{2}\) - step7: Calculate the value: \(\frac{59}{24}\) The integral \( \int _{1}^{2}\sqrt {1+(x^{2}-\frac{1}{4x^{2}})^{2}} d x \) simplifies to \( \frac{59}{24} \) or approximately 2.4583.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To evaluate the integral \( \int _{1}^{2}\sqrt {1+(x^{2}-\frac{1}{4x^{2}})^{2}} d x \), we can start by simplifying the expression inside the square root. First, let’s simplify \( x^2 - \frac{1}{4x^2} \): \[ x^2 - \frac{1}{4x^2} = \frac{4x^4 - 1}{4x^2} \] Now we square this expression: \[ \left( x^2 - \frac{1}{4x^2} \right)^2 = \left( \frac{4x^4 - 1}{4x^2} \right)^2 = \frac{(4x^4 - 1)^2}{16x^4} \] Next, we place this back into the integral: \[ \sqrt{1 + \left( x^2 - \frac{1}{4x^2} \right)^2} = \sqrt{1 + \frac{(4x^4 - 1)^2}{16x^4}} \] Combining the terms inside the square root: \[ \sqrt{\frac{16x^4 + (4x^4 - 1)^2}{16x^4}} = \frac{\sqrt{16x^4 + (16x^8 - 8x^4 + 1)}}{4x^2} \] This simplifies further to: \[ = \frac{\sqrt{16x^8 + 8x^4 + 1}}{4x^2} \] The integral can be written as: \[ \int_{1}^{2}\frac{\sqrt{(4x^4)^{2} + 2(4x^4)(\frac{1}{2}) + (\frac{1}{2})^{2}}}{4x^2} \, dx \] Next, we find \( 16x^8 + 8x^4 + 1 = (4x^4 + 1)^2 \). Thus, we have: \[ \sqrt{16x^8 + 8x^4 + 1} = 4x^4 + 1 \] We can substitute this back into the integral: \[ \int_{1}^{2} \frac{4x^4 + 1}{4x^2} \, dx = \int_{1}^{2} (x^2 + \frac{1}{4x^2}) \, dx \] Now we can separate this integral: \[ \int_{1}^{2} x^2 \, dx + \int_{1}^{2} \frac{1}{4x^2} \, dx \] Calculating the first integral: \[ \int x^2 \, dx = \frac{x^3}{3} \Big|_1^2 = \frac{8}{3} - \frac{1}{3} = \frac{7}{3} \] Calculating the second integral: \[ \int \frac{1}{4x^2} \, dx = -\frac{1}{4x} \Big|_1^2 = -\left(\frac{1}{8} - \frac{1}{4}\right) = \frac{1}{8} \] Combining these results gives: \[ \frac{7}{3} + \frac{1}{8} = \frac{56 + 3}{24} = \frac{59}{24} \] Thus, the value of the integral is: \[ \int _{1}^{2}\sqrt {1+(x^{2}-\frac{1}{4x^{2}})^{2}} d x = \frac{59}{24} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad