Pregunta
upstudy study bank question image url

Question 1 1.1. Prove that the sum of \( n \) terms of an arithmetic sequence of \( n \) terms is given formula: \( S_{n}=\frac{n}{2}[2 a+(n-1) d] \) 1.2. Consider the series: \( 5+8+11+14+17+\ldots+302 \) 1.2.1. Determine the formula for the \( n^{t h} \) term of the series. 1.2.2. How may terms are there in the series? 1.2.3. Express the series in sigma notation. 1.2.4. Determine the sum of the terms in the series. 1.3. Determine the value of \( n \) if 1.4. Expand and evaluate: \( \sum_{k=1}^{n}(3 k-15)=285 \)

Ask by Olson Ortiz. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- **1.1** Proven the formula \( S_n = \frac{n}{2}[2a + (n-1)d] \) for the sum of an arithmetic sequence. - **1.2.1** The \( n^{th} \) term is \( a_n = 3n + 2 \). - **1.2.2** There are 100 terms in the series. - **1.2.3** The series in sigma notation is \( \sum_{n=1}^{100} (3n + 2) \). - **1.2.4** The sum of the series is 15,350. - **1.4** The value of \( n \) is 19.

Solución

Let's solve the problem step by step. ### 1.1 Prove the formula for the sum of \( n \) terms of an arithmetic sequence An arithmetic sequence is defined by its first term \( a \) and a common difference \( d \). The \( n \)-th term of the sequence can be expressed as: \[ a_n = a + (n-1)d \] The sum of the first \( n \) terms \( S_n \) can be calculated as follows: 1. Write the sum in two different orders: \[ S_n = a + (a + d) + (a + 2d) + \ldots + (a + (n-1)d) \] \[ S_n = (a + (n-1)d) + (a + (n-2)d) + \ldots + a \] 2. Add these two equations: \[ 2S_n = [2a + (n-1)d] + [2a + (n-1)d] + \ldots + [2a + (n-1)d] \] There are \( n \) terms of \( [2a + (n-1)d] \). 3. Therefore, we have: \[ 2S_n = n[2a + (n-1)d] \] 4. Dividing both sides by 2 gives: \[ S_n = \frac{n}{2}[2a + (n-1)d] \] This proves the formula for the sum of the first \( n \) terms of an arithmetic sequence. ### 1.2 Consider the series: \( 5 + 8 + 11 + 14 + 17 + \ldots + 302 \) #### 1.2.1 Determine the formula for the \( n^{th} \) term of the series. The first term \( a = 5 \) and the common difference \( d = 3 \). The \( n^{th} \) term can be expressed as: \[ a_n = a + (n-1)d = 5 + (n-1) \cdot 3 = 3n + 2 \] #### 1.2.2 How many terms are there in the series? To find the number of terms, set the \( n^{th} \) term equal to 302: \[ 3n + 2 = 302 \] Solving for \( n \): \[ 3n = 300 \\ n = 100 \] #### 1.2.3 Express the series in sigma notation. The series can be expressed in sigma notation as: \[ \sum_{n=1}^{100} (3n + 2) \] #### 1.2.4 Determine the sum of the terms in the series. Using the sum formula \( S_n = \frac{n}{2}[2a + (n-1)d] \): - \( n = 100 \) - \( a = 5 \) - \( d = 3 \) Calculating the sum: \[ S_{100} = \frac{100}{2}[2 \cdot 5 + (100-1) \cdot 3] \\ = 50[10 + 297] \\ = 50 \cdot 307 \\ = 15350 \] ### 1.3 Determine the value of \( n \) if It seems like the question is incomplete. Please provide the complete statement for part 1.3. ### 1.4 Expand and evaluate: \[ \sum_{k=1}^{n}(3k - 15) = 285 \] This can be split into two separate sums: \[ \sum_{k=1}^{n}(3k) - \sum_{k=1}^{n}(15) = 285 \] Calculating each part: 1. The first sum: \[ \sum_{k=1}^{n}(3k) = 3\sum_{k=1}^{n}k = 3 \cdot \frac{n(n+1)}{2} = \frac{3n(n+1)}{2} \] 2. The second sum: \[ \sum_{k=1}^{n}(15) = 15n \] Putting it all together: \[ \frac{3n(n+1)}{2} - 15n = 285 \] Multiplying through by 2 to eliminate the fraction: \[ 3n(n+1) - 30n = 570 \\ 3n^2 + 3n - 30n - 570 = 0 \\ 3n^2 - 27n - 570 = 0 \] Dividing the entire equation by 3: \[ n^2 - 9n - 190 = 0 \] Now, we can solve this quadratic equation using the quadratic formula: \[ n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{9 \pm \sqrt{(-9)^2 - 4 \cdot 1 \cdot (-190)}}{2 \cdot 1} \] Calculating the discriminant: \[ = \frac{9 \pm \sqrt{81 + 760}}{2} = \frac{9 \pm \sqrt{841}}{2} = \frac{9 \pm 29}{2} \] Calculating the two possible values for \( n \): 1. \( n = \frac{38}{2} = 19 \) 2. \( n = \frac{-20}{2} = -10 \) (not valid since \( n \) must be positive) Thus, the value of \( n \) is: \[ n = 19 \] ### Summary of Results: - 1.1: Proven the formula for \( S_n \). - 1.2.1: \( a_n = 3n + 2 \) - 1.2.2: \( n = 100 \) - 1.2.3: \( \sum_{n=1}^{100} (3n + 2) \) - 1.2.4: \( S_{100} = 15350 \) - 1.4: \( n = 19 \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To understand an arithmetic sequence, think of it as a straight road where you are moving at a constant speed. Each term is a landmark you pass by, and the common difference \(d\) is how far apart those landmarks are. The formula for the sum of the first \(n\) terms gives you the distance traveled when you know your starting point \(a\) and your speed \(d\}. This way, you can easily calculate how far you've gone without adding up each term individually! When it comes to real-world applications, think about how arithmetic sequences pop up in everyday life, like when calculating expenses or budgeting. For example, if you save a fixed amount of money each week, the total savings after a certain number of weeks would form an arithmetic series. Whether you're planning a road trip, investing in a savings plan, or even organizing events, understanding how to sum these sequences can help you make smarter decisions!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad