Pregunta
upstudy study bank question image url

Determine the location of each local extremum of the function. \( f(x)=x^{3}+3 x^{2}-9 x+1 \)

Ask by Lambert Lindsey. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The function \( f(x) = x^{3} + 3x^{2} - 9x + 1 \) has: - A local maximum at \( x = -3 \) with a value of 28. - A local minimum at \( x = 1 \) with a value of -4.

Solución

To find the local extrema of the function f(x) = x³ + 3x² − 9x + 1, follow these steps: 1. Differentiate f(x) with respect to x:   f'(x) = 3x² + 6x − 9 2. Factor the derivative:   f'(x) = 3(x² + 2x − 3)   Note that x² + 2x − 3 factors as (x − 1)(x + 3), so   f'(x) = 3(x − 1)(x + 3) 3. Find the critical points by setting f'(x) = 0:   3(x − 1)(x + 3) = 0 ⟹ x − 1 = 0 or x + 3 = 0   Thus, the critical points are x = 1 and x = −3. 4. Use the second derivative test to classify these points. First, compute f''(x):   f''(x) = d/dx [3x² + 6x − 9] = 6x + 6   Evaluate f''(x) at each critical point:   • At x = −3: f''(−3) = 6(−3) + 6 = −18 + 6 = −12, which is less than 0. This indicates a local maximum.   • At x = 1: f''(1) = 6(1) + 6 = 6 + 6 = 12, which is greater than 0. This indicates a local minimum. 5. Determine the function values at these points:   • f(−3) = (−3)³ + 3(−3)² − 9(−3) + 1      = −27 + 3(9) + 27 + 1      = −27 + 27 + 27 + 1 = 28   • f(1) = (1)³ + 3(1)² − 9(1) + 1      = 1 + 3 − 9 + 1 = −4 Therefore, the function has:   • A local maximum at (−3, 28)   • A local minimum at (1, −4)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the local extremum of the function \( f(x) = x^{3} + 3x^{2} - 9x + 1 \), we first need to find the derivative of the function: \[ f'(x) = 3x^{2} + 6x - 9. \] Next, we set the derivative equal to zero to find the critical points: \[ 3x^{2} + 6x - 9 = 0. \] Dividing the entire equation by 3 gives: \[ x^{2} + 2x - 3 = 0. \] Now, we can factor this quadratic equation: \[ (x + 3)(x - 1) = 0. \] Thus, the critical points are: \[ x = -3 \quad \text{and} \quad x = 1. \] To determine whether these points are local minima or maxima, we can use the second derivative test. First, we find the second derivative: \[ f''(x) = 6x + 6. \] Now, we evaluate the second derivative at the critical points: 1. For \( x = -3 \): \[ f''(-3) = 6(-3) + 6 = -18 + 6 = -12, \] which is less than zero, indicating that \( x = -3 \) is a local maximum. 2. For \( x = 1 \): \[ f''(1) = 6(1) + 6 = 6 + 6 = 12, \] which is greater than zero, indicating that \( x = 1 \) is a local minimum. In summary, the local extremum locations for the function \( f(x) \) are: - Local maximum at \( x = -3 \) - Local minimum at \( x = 1 \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad