Pregunta
upstudy study bank question image url

If \( \sin A=\frac{2 \sqrt{6}}{5} \) and \( A \in\left[90^{\circ} ; 360^{\circ}\right] \) calculate without the use of a calculator and with the aid of a diagram the value of \( 15 \tan A \cdot \cos A \) If \( \sin \alpha=\frac{3}{5} \) with \( \alpha \in\left[00^{\circ}\right. \)

Ask by Pope Davies. in South Africa
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Given sin A = (2√6)/5 and A is between 90° and 360°, we find: - cos A = -1/5 - tan A = -2√6 Then, 15 · tan A · cos A = 6√6. For sin α = 3/5 with α acute: - cos α = 4/5 - tan α = 3/4

Solución

We are given that   sin A = (2√6)/5               (1) with A in the interval [90°, 360°]. We are asked to find the value of   15 · tan A · cos A without using a calculator and by means of a diagram. Below is a step‐by‐step solution. ──────────────────────── Step 1. Find cos A from sin A. A diagram of a right–triangle (or using the Pythagorean identity) is most helpful. Recall that   sin²A + cos²A = 1. We have   sin²A = [(2√6)/5]² = (4·6)/25 = 24/25. Thus,   cos²A = 1 – 24/25 = 1/25, so that   |cos A| = 1/5. However, the sign of cos A depends on the quadrant in which A lies. Since sin A > 0 but the interval [90°, 360°] includes the 2nd and 3rd quadrants, we must decide which quadrant A is in. Notice that sin A = (2√6)/5 is positive; in standard position the sine is positive in the 1st and 2nd quadrants. Since A is between 90° and 360°, the only acceptable quadrant is the 2nd quadrant. In the 2nd quadrant, cosine is negative. Therefore, we have   cos A = –1/5. ──────────────────────── Step 2. Find tan A from sin A and cos A. Recall that   tan A = sin A / cos A. Thus,   tan A = [(2√6)/5] / (–1/5) = –2√6. ──────────────────────── Step 3. Compute 15 · tan A · cos A. Substitute the values found:   tan A = –2√6  and  cos A = –1/5. So,   15 · tan A · cos A = 15 · (–2√6) · (–1/5). Multiply the negatives: (–2√6) · (–1/5) = 2√6/5. Then,   15 · (2√6/5) = (15/5) · 2√6 = 3 · 2√6 = 6√6. ──────────────────────── Thus, the value of 15 · tan A · cos A is 6√6. ──────────────────────── Part 2: Additional Information The problem statement also gives:   sin α = 3/5  with  α ∈ [0°, …) (At this point the interval seems to be intended as for an acute angle, and often such problems continue asking for related quantities.) For an acute angle α (that is, 0° ≤ α < 90°), we can draw a right–angled triangle whose angle α satisfies   sin α = (Opposite) / (Hypotenuse) = 3/5. Using the Pythagorean theorem, the side adjacent to α is   Adjacent = √(Hypotenuse² – Opposite²) = √(5² – 3²) = √(25 – 9) = √16 = 4. Thus, for α:   cos α = Adjacent / Hypotenuse = 4/5,   tan α = Opposite / Adjacent = 3/4. ──────────────────────── Summary of Answers 1. Given sin A = (2√6)/5 with A in [90°, 360°]:   cos A = –1/5,   tan A = –2√6,   15 · tan A · cos A = 6√6. 2. Given sin α = 3/5 with α acute:   cos α = 4/5,   tan α = 3/4. These results have been obtained without using a calculator and with the aid of diagrams as appropriate.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find \( 15 \tan A \cdot \cos A \), we first need to determine \( \tan A \) and \( \cos A \) given that \( \sin A = \frac{2 \sqrt{6}}{5} \). Using the Pythagorean identity, \( \cos^2 A = 1 - \sin^2 A \): \[ \sin^2 A = \left(\frac{2 \sqrt{6}}{5}\right)^2 = \frac{24}{25} \] \[ \cos^2 A = 1 - \frac{24}{25} = \frac{1}{25} \implies \cos A = \pm \frac{1}{5} \] Since \( A \) can be in the third or fourth quadrant in the interval \([90^\circ, 360^\circ]\), and where \( \cos A\) is negative in the third quadrant: \[ \cos A = -\frac{1}{5} \] Next, we can find \( \tan A \): \[ \tan A = \frac{\sin A}{\cos A} = \frac{\frac{2 \sqrt{6}}{5}}{-\frac{1}{5}} = -2 \sqrt{6} \] Now compute \( 15 \tan A \cdot \cos A\): \[ 15 \tan A \cdot \cos A = 15 \cdot (-2 \sqrt{6}) \cdot \left(-\frac{1}{5}\right) = 15 \cdot \frac{2 \sqrt{6}}{5} = 6 \sqrt{6} \] Thus, the final result is: \[ \boxed{6 \sqrt{6}} \] Now regarding \( \sin \alpha = \frac{3}{5} \), to find \( \cos \alpha \): \[ \cos^2 \alpha = 1 - \sin^2 \alpha = 1 - \left(\frac{3}{5}\right)^2 = 1 - \frac{9}{25} = \frac{16}{25} \implies \cos \alpha = \pm \frac{4}{5} \] And since \( \alpha \) is within \([0^\circ, 90^\circ]\), where \( \cos \alpha \) is positive: \[ \cos \alpha = \frac{4}{5} \]

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad