Pregunta
upstudy study bank question image url

Find the domain and the range of the function. \( f(x)=\left\{\begin{array}{ll}-\frac{5}{7} x+3, & \text { for } x<7 \text {, } \\ -2, & \text { for } x \geq 7\end{array}\right. \) What is the domain of the given function? \( (-\infty, \infty) \) (Type your answer in interval notation.) What is the range of the graph of a function? \( \square \) (Type your answer in interval notation.)

Ask by Wang Higgins. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The domain of the function is all real numbers, \( (-\infty, \infty) \), and the range is all real numbers less than or equal to -2, \( (-\infty, -2] \).

Solución

To find the domain and range of the given function \( f(x) \), we need to consider the two cases defined by the function: 1. For \( x < 7 \), the function is defined as \( f(x) = -\frac{5}{7}x + 3 \). 2. For \( x \geq 7 \), the function is defined as \( f(x) = -2 \). ### Domain: The domain of a function is the set of all possible input values for which the function is defined. In this case, the function is defined for all real numbers, so the domain is \( (-\infty, \infty) \). ### Range: The range of a function is the set of all possible output values for which the function is defined. To find the range, we need to consider the two cases: 1. For \( x < 7 \), the function is \( f(x) = -\frac{5}{7}x + 3 \). This is a linear function, and its range is all real numbers. 2. For \( x \geq 7 \), the function is \( f(x) = -2 \). This is a constant function, and its range is a single value, \( -2 \). Therefore, the range of the function is \( (-\infty, -2] \). So, the domain of the given function is \( (-\infty, \infty) \) and the range is \( (-\infty, -2] \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

The domain of the function \( f(x) \) is all real numbers, so in interval notation, it's expressed as \( (-\infty, \infty) \). This is because the function is defined for every \( x \) whether it is less than or greater than or equal to 7. As for the range, \( f(x) \) takes values according to two cases. For \( x < 7 \), as \( x \) approaches 7 from the left, \( f(x) \) approaches \( -\frac{5}{7} \times 7 + 3 = -\frac{35}{7} + 3 = -5 + 3 = -2 \). Therefore, from the left, \( f(x) \) can reach up to \( -2 \) but not including it. For \( x \geq 7 \), \( f(x) \) is constantly \( -2 \). Hence, the range in interval notation is \( (-\infty, -2] \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad