Decide whether the given equation defines \( y \) as a function of \( x \). Then give the domain and range. \( x=y^{12} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
The equation \( x = y^{12} \) does not define \( y \) as a function of \( x \) because for a single value of \( x \), there can be multiple values of \( y \). Specifically, for any positive value of \( x \), there are 12 possible values of \( y \) (both positive and negative), and if \( x = 0 \), then \( y = 0 \) is the sole solution. So, it's not a function. For the domain, since \( x = y^{12} \), \( y \) can be any real number, making the domain all non-negative real numbers: \( [0, \infty) \). The range, however, is all real numbers because \( y \) can take on any value from negative to positive infinity.
