Pregunta
upstudy study bank question image url

3. (1.5 points) Which of the following describes the equilibrium point of the following system of differential equations: \[ \frac{d Y}{d t}=\left(\begin{array}{cc}1 & 6 \\ 3 & -6\end{array}\right) Y \text {. } \] (a) center (b) sink (c) source (d) saddle (e) spiral sink (f) spiral source

Ask by Gross Summers. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The equilibrium point is a saddle.

Solución

To classify the equilibrium point at Y = 0, we need to find the eigenvalues of the matrix   A = [ [1, 6],      [3, -6] ]. We determine the eigenvalues by solving the characteristic equation:   det(A - λI) = 0. Write the matrix subtraction:   A - λI = [ [1 - λ, 6],        [3, -6 - λ] ]. Next, compute the determinant:   det(A - λI) = (1 - λ)(-6 - λ) - (6)(3). Expanding the first product:   (1 - λ)(-6 - λ) = (-6 - λ + 6λ + λ²) = λ² + 5λ - 6. Now subtract the product of 6 and 3:   λ² + 5λ - 6 - 18 = λ² + 5λ - 24 = 0. Factor the quadratic:   (λ + 8)(λ - 3) = 0. Thus, the eigenvalues are:   λ = -8 and λ = 3. Since one eigenvalue is positive (3) and the other is negative (-8), the equilibrium point is a saddle. Therefore, the correct answer is:   (d) saddle.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine the type of equilibrium point for the given system of differential equations, we first analyze the coefficient matrix: \[\begin{pmatrix} 1 & 6 \\ 3 & -6 \end{pmatrix}.\] Calculating the eigenvalues gives us insights into the nature of the equilibrium point. The eigenvalues are found by solving the characteristic equation which is derived from the determinant of \(A - \lambda I\). In this case, we would get a calculation that leads to a positive and a negative eigenvalue, indicating the presence of a saddle point. Hence, the correct answer is (d) saddle. The behavior of systems like this has intrigued mathematicians and scientists for centuries! Systems of differential equations can predict everything from population dynamics to circuit behavior. These linear systems showcase how eigenvalues and eigenvectors provide crucial insight into stability and the trajectory of solutions, making them a cornerstone in both theoretical and applied mathematics.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad