Pregunta
upstudy study bank question image url

Use substitution to solve this system of linear equations. \[ 6 y=-15-3 x \] \[ x+2 y=-5 \] Select the correct choice below and, if necessary, enter an ordered pair \( (x, y) \) to complete your answer. \[ \text { One solution: } \] \[ \text { No solution } \] Question Help: \( \square \) Video Submit Question

Ask by Welch Mejia. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

There are infinitely many solutions.

Solución

Solve the system of equations \( 6y=-15-3x;x+2y=-5 \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}6y=-15-3x\\x+2y=-5\end{array}\right.\) - step1: Solve the equation: \(\left\{ \begin{array}{l}6y=-15-3x\\x=-5-2y\end{array}\right.\) - step2: Substitute the value of \(x:\) \(6y=-15-3\left(-5-2y\right)\) - step3: Simplify: \(6y=6y\) - step4: Calculate: \(\left(x,y\right) = \left(-5-2y,y\right),y \in \mathbb{R}\) - step5: Alternative Form: \(\textrm{Infinitely many solutions}\) The system of linear equations has infinitely many solutions. This means that there are an infinite number of ordered pairs (x, y) that satisfy both equations. Therefore, the correct answer is that there are infinitely many solutions.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

First, let's rearrange the first equation to express \( y \) in terms of \( x \): \[ 6y = -15 - 3x \] Dividing everything by 6 gives us: \[ y = -\frac{5}{2} - \frac{1}{2}x \] Now substitute this expression for \( y \) into the second equation: \[ x + 2\left(-\frac{5}{2} - \frac{1}{2}x\right) = -5 \] Distributing the 2 leads to: \[ x - 5 - x = -5 \] This simplifies to: \[ -5 = -5 \] This indicates that the equations represent the same line, meaning there are infinitely many solutions. Thus, the result is expressed as: **One solution: infinitely many solutions.** A specific ordered pair can be found by choosing any value for \( x \) (e.g., \( x = 0 \)), which leads to \( y = -\frac{5}{2} - 0 = -\frac{5}{2} \). So one particular solution is \( (0, -\frac{5}{2}) \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad